簡易檢索 / 詳目顯示

研究生: 廖容莉
Liao, Jung-Li
論文名稱: 兩種用於高效率定量淺層混濁樣品光學性質之平面光源光譜系統:理論分析與實驗
Two types of planar source illumination spectroscopy systems for efficient superficial turbid sample optical properties quantification: theoretical analysis and experiment
指導教授: 曾盛豪
Tseng, Sheng-Hao
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 122
中文關鍵詞: 吸收係數散射係數光學特性平面光架構使用平面光的擴散探頭
外文關鍵詞: Absorption Coefficient, Reduced Scattering Coefficient, Optical Properties, Planar Source Illumination Geometry, Diffusing Probe with Planar Source Geometry
相關次數: 點閱:142下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中我們建構了兩種光學方法去探討與量測仿生物組織的假體光學性質,此兩種光學架構分別為頻域光子遷移系統搭配平面光架構(PSI),以及頻域光子遷移系統搭配使用平面光的擴散探頭(DPPS)。其光源使用波長808奈米的近紅外光雷射,並利用光傳播理論模型去精確地得知組織的吸收係數和散射係數。在本實驗架構裡,首先,我們使用蒙地卡羅方法評估兩套架構之擴散理論表現及正確性;其次,測試了頻域光子遷移系統分別搭配兩種光源架構的振幅和相位的穩定性,這可以使我們了解系統的性能以及限制;再來我們使用兩套架構量測六種不同吸收和不同散射的仿生物組織之液態假體,並討論其表現與分析其優缺點;最後,驗證了此兩套架構:頻域光子遷移系統搭配平面光架構(PSI),以及頻域光子遷移系統搭配使用平面光的擴散探頭(DPPS),皆可以非侵入式的方法快速的量測到待測組織的光學參數。除此之外,不論在理論上或實驗上,我們亦證明了,搭配擴散探頭(DPPS)之方法優於搭配平面光架構(PSI)之方法,其可更精確定量樣品的光學參數。

    In this thesis, we demonstrate the use of two optical methods, the frequency domain photon migration (FDPM) system configured in the planar source illumination (PSI) geometry and diffusing probe with planar source (DPPS) geometry, to investigate physiological parameters of biological tissues. The system uses near-infrared laser light (808nm) as light source and work in conjunction with mathematical photon transport models to accurately determine optical absorption (µa) and reduced scattering (µs′) properties of tissues. In this study, we would like to understand the performance of the PSI and DPPS geometries using numerical and phantom methods. First, we employ the Monte Carlo method to evaluate the performance of diffusion equations in PSI and DPPS geometries. Second, we characterize the stability of the amplitude and phase of the FDPM system configured in PSI and DPPS geometries so that we can understand the limitations of our systems. Third, we carry out PSI and DPPS measurements on six liquid phantoms of various absorption and scattering properties, and discuss the performance of two detected geometries and analyze their advantages and drawbacks. Finally, it is verified that the FDPM configured in the PSI and DPPS geometry provide a fast and noninvasive way to quantify optical properties of tissue. In addition, the DPPS method is more suitable and accurate for the determination of the optical properties of samples than the PSI method, either in the theory or in the experiments.

    Abstract (in Chinese) I Abstract (in English) II Acknowledgements III Outline IV List of Tables VI List of Figures VIII List of Symbols XII List of Abbreviation XV Chapter 1 Introduction 16 1.1 Motivation 16 1.2 Background 19 1.3 Objective of This Study 21 Chapter 2 Theoretical Background 23 2.1 Radiative Transfer Equation 24 2.2 Diffusion Model with Planar Light Source 28 2.2.1 P1 Diffusion model with a Planar Illumination Source 32 2.2.2 δ-P1 Diffusion Model with a Planar Illumination Source 36 2.3 Frequency Domain Reflectance of the Planar Source Illumination Geometry and Diffusing Probe with Planar Source Geometry 46 2.3.1 The Diffusion Model in Frequency Domain for the Planar Source Illumination Geometry 46 2.3.2 The Diffusion Model in Frequency Domain for the Diffusing Probe with Planar Source Geometry 48 Chapter 3 Materials and Methods 50 3.1 Monte Carlo Simulation 51 3.2 Frequency Domain Photon Migration System and Planar Source Illumination Geometry 54 3.3 Diffusing Probe with Planar Source Geometry 57 3.4 Stability of the Frequency Domain Photon Migration System 59 3.5 Liquid Phantom 60 3.6 Determination of Phantom Optical Properties 65 Chapter 4 Results and Discussion 67 4.1 Monte Carlo Simulation 68 4.2 Stability of FDPM System 83 4.2.1 Stability of FDPM System in PSI Geometry 83 4.2.2 Stability of FDPM System in DPPS Geometry 85 4.3 Liquid Phantom Measurements in PSI Geometry 88 4.4 Liquid Phantom Measurements in DPPS Geometry 96 Chapter 5 Conclusion and Future Work 111 5.1 Conclusion 111 5.2 Future Work 113 Reference 114

    1. R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand, G. Aguilar, and J. S. Nelson, "Determination of human skin optical properties
    from spectrophotometric measurements based on optimization by genetic algorithms," Journal of Biomedical Optics 10 (2005).
    2. S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, "Chromophore concentrations, absorption and scattering properties of human skin in-vivo," Optics Express 17, 14599-14617 (2009).
    3. B. J. Tromberg, R. C. Haskell, S. J. Madsen, and L. O. Svaasandpp, "Characterization of Tissue Optical Properties using Photon Density Waves: Modulation-Frequency and Boundary Considerations," Molecular and Cellular Biophysics 8, 359-386 (1995).
    4. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Applied Optics 37, 3586-3596 (1998).
    5. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, "Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions," Applied Optics 36, 125-135 (1997).
    6. F. Bevilacqua, P. Marquet, O. Coquoz, and C. Depeursinge, "Role of tissue structure in photon migration through breast tissues," Applied Optics 36, 44-51 (1997).
    7. I. S. Saidi, S. L. Jacques, and F. K. Tittel, "Mie and Rayleigh modeling of visible-light scattering in neonatal skin," Applied Optics 34, 7410-7418 (1995).
    8. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Applied Optics 35, 2304-2314 (1996).
    9. R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J.-F. Savary, P. Monnier, and H. v. d. Bergh, "Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry," Applied Optics 35, 1756-1766 (1996).
    10. R. A. Weersink, J. E. Hayward, K. R. Diamond, and M. S. Patterson, "Accuracy of Noninvasive in vivo Measurements of Photosensitizer Uptake Based on a Diffusion Model of Reflectance Spectroscopy," Photochemistry and Photobiology 33, 326-335 (1997).
    11. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "In vivo local determination of tissue optical properties: applications to human brain," Applied Optics 38, 4939-4950 (1999).
    12. E. L. Hull, M. G. Nichols, and T. H. Foster, "Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes," Physics in Medicine and Biology 43, 3381-3404 (1998).
    13. T. J. Farrell, M. S. Patterson, and B. Wilson, "A Diffusion-Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical-Properties In vivo," Medical Physics 19, 879-888 (1992).
    14. S. J. Matcher, M. Cope, and D. T. Delpy, "In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Applied Optics 36, 386-396 (1997).
    15. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast," Applied Physics Letters 74, 874-876 (1999).
    16. B. J. Tromberg, L. O. Svaasand, T.-T. Tsay, and R. C. Haskell, "Properties of photon density waves in multiple-scattering media," Applied Optics 32, 607-616 (1993).
    17. E. M. Sevick-Muraca, J. S. Reynolds, T. L. Troy, G. Lopez, and D. Y. Paithankar, "Fluorescence lifetime spectroscopic imaging with measurements of photon migration " Annals of the New York Academy of Sciences 838, 46-57 (1998).
    18. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, "Phase measurement of light absorption and scatter in human tissue " Review of Scientific Instruments 69, 3457-3481 (1998).
    19. M. Gerken, and G. W. Faris, "Frequency-domain immersion technique for accurate optical property measurements of turbid media," Optics Letters 24, 1726-1728 (1999).
    20. S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, "Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry," Optical Engineering 34, 32-42 (1995).
    21. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," The Journal of the Optical Society of America 11, 2727-2741 (1994).
    22. K. M. Yoo, F. Liu, and R. R. Alfano, "When does the diffusion approximation fail to describe photon transport in random-media," Physical Review Letters 64, 2647-2650 (1990).
    23. D. Hsiang, A. Durkin, J. Butler, B. J. Tromberg, A. Cerussi, and N. Shah, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," Journal of Biomedical Optics 11, 044005 (2006).
    24. E. Gratton, V. Toronov, U.Wolf, M.Wolf, and A.Webb, "Measurement of brain activity by near-infrared light," Journal of Biomedical Optics 10, 011008 (2005).
    25. Q. Liu, and N. Ramanujam, "Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media," Optical Society of America 24, 1011-1025 (2007).
    26. S. P. Yeh, "Measuring the optical properties of superficial turbid sample using the steady state frequency domain photon migration system," in Photonics (National Cheng Kung University, 2012).
    27. S. H. Tseng, and M. F. Hou, "Analysis of a diffusion-model-based approach for efficient quantification of superficial tissue properties," Optics Letters 35, 3739-3741 (2010).
    28. S. H.Tseng, and M. F.Hou, "Efficient determination of the epidermal optical properties using a diffusion model-based approach: Monte Carlo studies," Journal of Biomedical Optics 16, 087007 (2011).
    29. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Graton, "Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media," Applied Optics 37, 7447-7458 (1998).
    30. A. H. Hielscher, B. C. F. K. T. Hanli Liu, and S. L. Jacques, "Time-resolved photon emission from layered turbid media," Applied Optics 35, 719-728 (1996).
    31. J. M. Schmitt, G. Z. Zhou, E. C. Walker, and R. T. Wall, "Multilayer model of photon diffusion in skin," The Journal of the Optical Society of America 7, 2141-2153 (1990).
    32. I. Dayan, S. Havlin, and G. H. Weiss, "Photon migration in a two-layer turbid medium. A diffusion analysis," Journal of Modern Optics 39, 1567-1582 (1992).
    33. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagninures, and H. V. D. Bergh, "Noninvasive determination of the optical properties of two-layered turbid media," Applied Optics 37, 779-791 (1998).
    34. L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, and J. S. Nelson, "Tissue parameters determining the visual appearance of normal skin and portwine stains," Lasers in Medical Science 10, 55-65 (1995).
    35. L. O. Svaasand, T. Spott, J. B. Fishkin, T. H. Pham, B. J. Tromberg, and M. W. Berns, "Reflectance measurements of layered media with diffuse photon-density waves: a potential tool for evaluating deep burns and subcutaneous lesions," Physics in Medicine and Biology 44, 801-813 (1999).
    36. T. H. Pham, T. Spott, L. O. Svaasand, and B. J. Tromberg, "Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance," Applied Optics 39, 4733-4745 (2000).
    37. J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, "The Delta-Eddington Approximation for Radiative Flux Transfer," Journal of the Atmospheric Sciences 33, 2452-2459 (1976).
    38. S. A. Carp, S. A. Prahl, and V. Venugopalan, "Radiative transport in the delta-P1 approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media," Journal of biomedical optics 9, 632-647 (2004).
    39. L. V. Wang, and H. I. Wu, Biomedical Optics : Principles and Imaging (John Wileh & Sons,Inc., 2007).
    40. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, "Refractive index of some mammalian tissues using a fiber optic cladding method," Applied Opitcs 28, 2297-2302 (1989).
    41. S. A. Prahl, S. L. Jacques, and C. A. Alter, "Angular dependence of hene laser light scattering by human dermis," Lasers Lifes Science 1, 309-333 (1987).
    42. V. Venugopalan, J. S. You, and B. J. Tromberg, "Radiative transport in the diffusion approximation: An extension for highly absorbing media and small source-detector separations," Physical Review Letters 58 (1998).
    43. L. V. Wang, and H. I. Wu, Biomedical Optics: Principles and Imaging (Wiley, New Jersey, 2007).
    44. B. W. Pogue, and M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," Journal of Biomedical Optics 11, 041102 (2006).
    45. P. D. Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, "Fat emulsions as diffusive reference standards for tissue simulating phantoms?," Applied Opitcs 51, 7176-7182 (2012).
    46. H. J. V. Staveren, C. J. Moes, J. V. Marie, S. A. Prahl, and M. J. V. Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Applied Optics 30, 4507-4514 (1991).
    47. S. H. Tseng, A. Grant, and A. J. Durkin, "In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy," Journal of Biomedical Optics 13 (2008).
    48. C. R. Simpsonyz, M. Kohlyx, M. Essenpreisk, and M. Copey, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Physics in Medicine and Biology 43, 2465-2479 (1988).
    49. E. Alerstam, S. Andersson-Engels, and T. Svensson, "White Monte Carlo for time-resolved photon migration," Journal of Biomedical Optics 13 (2008).
    50. A. Kienle, and M. S. Patterson, "Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semiinfinite turbid medium," The Journal of the Optical Society of America 14, 246-254 (1997).
    51. M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, "Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult," Biomedical Optics Express 2, 552-567 (2011).

    下載圖示 校內:2015-08-06公開
    校外:2015-08-06公開
    QR CODE