| 研究生: |
黃昱斌 Huang, Yu-Pin |
|---|---|
| 論文名稱: |
高溫冶煉底吹製程管口上方固凝物形成之物理模型及數值模擬研究 Study of Accretion Formation on Bottom-blown Gas Tuyere in Pyrometallurgical Reactor by Physical Models and Numerical Simulation |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 180 |
| 中文關鍵詞: | 相似性 、物理模型 、固凝物 、氣體底吹 、高溫鋼鐵冶煉 |
| 外文關鍵詞: | Pyrometallurgical, Gas bottom-blown, Accretion, Physical models |
| 相關次數: | 點閱:81 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高溫鋼鐵冶煉製程中常利用氣體底吹來提升冶煉效率,但製程中底吹氣體所伴隨的氣泡回擊現象會嚴重的侵蝕底吹管口及其周圍之耐火材料,導致製程中斷及冶煉成本提高。由於常溫的底吹氣體在吹入高溫鐵水的過程中會不斷吸熱,因此在適當的製程條件下有機會在底吹管口附近形成一鐵相固凝物,藉由此固凝物可避免氣泡直接回擊爐底,此為減緩爐底侵蝕的方法之一。如何經由製程操作條件來預估固凝物之型態、尺寸及生長情形,對於高溫冶煉製程極為重要,因此本研究藉由物理模型、相似性換算及數值模擬解析等實驗方法,來探討爐內固凝物之生成。
物理模型包含水模及蠟模,分別以水及蠟來模擬鐵水,吹入低溫空氣來模擬氣體及鐵水間的溫差,實驗將觀察不同操作條件下固凝物之生成及型態。實驗可觀察到水模及蠟模之固凝物皆為圓錐狀,內部皆有一與管徑相同之中空圓柱供氣體流通。水模及蠟模實驗皆顯示固凝物達穩態後的尺寸皆會隨著液相過熱度下降、氣體流量上升或氣體溫度下降而增加。由於蠟之固凝物生成後不易斷裂且邊界較易分辨,因此較易針對固凝物成長速率與達穩態所需時間(成長時間)做觀察,結果顯示固凝物成長速率與成長時間亦會隨著液相溫度下降及氣體流量上升而增加。因此在探討蠟模固凝物之達穩態尺寸、成長時間與平均成長速率之關連後,可得固凝物之成長速率與其成長時間成正比,達穩態時的高度則與其成長時間的平方成正比。
相似性換算法ASCM (Accretion Similarity Conversion Method)是用來關聯物理模型與高溫冶煉爐間的物理變數,目的是將水模或蠟模固凝物之生成情形,合理的關連至其他相似的系統中。相似性換算法ASCM是利用帕金漢π理論找出關連兩相似系統間之重要的無因次群,再加上考量同系統間之物理變數所推導之圓柱狀固凝物熱傳解析方程式發展而成。為了使無因次化方程式對固凝物熱傳凝固系統之描述更精確,研究將圓柱狀固凝物之假設改良為較合理的圓錐狀固凝物,此時推衍出來之相似性換算法為Modified ASCM。相似性換算法主要包含熱狀態相似性換算、流量相似性換算及固凝物尺寸相似性換算三步驟,利用這三步驟即可求出兩系統間對應之液相過熱度、氣體流量及固凝物尺寸。本研究並藉由水模及蠟模之實驗結果驗證Modified ASCM之準確性及可靠度,結果顯示其誤差在合理範圍內。
本研究也針對水模進行固凝物生成之熱傳解析,採用熱擴散區域的技巧來決定氣液邊界吸熱區域的大小,並利用高斯分佈來分配熱傳遞量。數值模擬解析之固凝物尺寸與水模實驗量測到之固凝物尺寸相當符合,因此可與水模實驗結果得到相互的驗證。
In pyrometallurgical processes, gas bottom-blown technique has been widely applied to agitate the liquid bath inside the vessel to enhance metallurgical efficiency via high mixing intensity. In general, the erosion of refractory lining near gas bottom-blown tuyere is severer than other area inside the vessel due to back attack of blown gas bubbles. One of the countermeasures to alleviate the erosion is to generate an iron accretion sitting on the refractory lining via appropriate bottom-blown conditions. The covering of the accretion can protect the refractory lining from being eroded by the back attack of gas bubbles. Therefore, how to generate accretion with proper size and shape is one important issue for high performance gas bottom- blown process.
Due to high temperature operation, it is extremely difficult to visualize what is happening inside the pyrometallurgical vessels. Therefore, water and wax models were adopted to investigate the effects of gas bottom-blown condition on growth, shape and dimensions of the accretion formed. In the experimental results of physical models, the accretions were all in cone shape with a hollow channel for gas flowing through. Final sizes of the accretions at steady state were proportional to gas flow rate and were inversely proportional to the liquid temperature. In addition, the accretion formation time and growth rate increased with gas flow rate and decreased with liquid temperature. Therefore, it can be concluded that accretion growth rate and time are both proportional to the final accretion sizes. The results showed that the final heights of accretions were directly proportional to growth rate and squared of growth time.
The most important point that whether experimental data of the cold model are accurately applied to the hot model is how to connect the systematic parameters between the two units. In the study, Buckingham Pi theorem was adopted to derive the important dimensionless parameters for correlating conditions of accretion formation in the similar systems. Then, by combining dimensionless parameters with heat transfer equations that describe the heat transfer across the accretion, quantitative relations based on the similarity conversion between different conditions of the similar systems was established. Hereafter, the method mentioned above is called Accretion Similarity Conversion Method (ASCM). Based on the experimental data in the water model, the accuracy of the estimated dimensions of the wax accretion by ASCM is acceptable.
Moreover a numerical analysis was conducted to estimate accretion sizes on the water model. Thermal diffusion zone and Gaussian distribution methods were adopted to express the heat flux distribution between the gas and liquid interface. The results indicated that sizes of solid accretions inside the water model could be relatively precisely estimated by the numerical analysis.
1. 陳家祥編撰,“鋼鐵冶金學”,冶金工業出版社,2004年9月
2. 中鋼新煉鐵製程讀書會資料,中國鋼鐵公司,1987年6月
3. 陳建任、黃德晉、林偉凱、李肇升、陳奕穎、陳俊雄及陸蓉菁編撰,“2006鋼鐵年鑑”,財團法人金屬工業研究發展中心,2006年5月
4. 黃哲文編撰,“鋼鐵冶金學Ⅲ煉鋼技術”,第五篇轉爐煉鋼法,中國礦冶工程學會,1986年9月
5. N. A. Molloy, T. Evans, P. Tapp, J. Lucas and M. Lee, “Tuyere Geometry Effects on Flow Performance”, the Howard Worner International Symposium on Injection in Pyrometallurgy Edited by M. Nilmani and T. Lehner. The Minerals, Metals and Materials Society, p237-249, 1996
6. H. Iso, Y. Jyono, K. Arima, M. Kanemoto, M. Okajima and H. Narita., “Development of Bottom-blowing Nozzle for Combined Blowing Converter”, Transactions of ISIJ, vol. 28, p49-58, 1988
7. T. Aoki, S. Masuda, A. Hatono and M. Taga, “Proceedings International Conference on Injection Phenomena Extraction and Refining”, Department of Metal and Engineering Materials, University of Newcastle upon Tyne, vol. 1, 1982
8. T. Aoki, “Elimination of the Back-Attack Phenomenon on a Bottom Blowing Tuyere Investigated in Model Experiments”, 鐵と鋼, vol. 76, p240-246, 1990
9. Q. X. Yang, H. Gustavsson and E. Burströmm, “Erosion of Refractory During Gas Injection – A Cavitation Based Model”, Scandinavian Journal of Metallurgy, vol. 19, p127-136, 1990
10. M. Iguchi, O.J. Ilegbusi, H. Ueda, T. Kuranga and Z.I. Morita, “Water Model Experiment on the Liquid Flow Behavior in a Bottom Blown Bath with Top Layer”, Metallurgical and Materials Transactions B, vol. 27B, p35-41, 1996
11. D. Mazumdar and R. I. L. Guthrie, “Hydrodynamic Modeling of Some Gas Injection Procedures in Ladle Metallurgy Operations”, Metallurgicall Transations, vol. 16, p83-90, 1985
12. A. K. Kyllo and G. G. Richards, “Accretion Formation in Gas Injection”, the Howard Worner International Symposium on Injection in Pyrometallurgy Edited by M. Nilmani and T. Lehner. The Minerals, Metals and Materials Society, p149-161, 1996
13. C. Xu, Y. Sahai, and R. I. L. Guthrie, “Formation of Thermal Accertion in Submerged Gas Injection Processes”, Ironmaking and Steelmaking, vol. 11, no. 2, p101-107, 1984
14. R. I. L. Guthrie, H. C. Lee and Y. Sahai, ”On the Formation of Thermal in Steelmaking Vessels”, Proceedings of the Savard/Lee International Symposium on Bath Smelting Edited by J. K. Brimacombe, P. J. Mackey, G. J. Kor, C. Bickert and M. G. Ranade. The Minerals, Metals and Materials Society, p445-462, 1992
15.黃昱斌,“直接熔融還原煉鐵製程底吹台上方固凝物形成之水模研究”,國立成功大學碩士論文,2001年6月
16. A. K. Gary and K. D. Peaslee, “Physical Modeling Studies of Major Factors Affecting Slag Splashing”, ISS Transactions, vol. 25, No. 7, July, p 57-63, 1998
17. R. J. Matway, H. Henein and R. J. Fruehan, "Physical Modeling of Slag/Metal Reactions in Combined Blowing", ISS Transaction, Iron and Steelmaker, vol.13, p121-128, 1992
18. T. Fukutake and V. Rajakumar, “Liquid Holdup and Abnormal Flow Phenomena in Packed Beds under Conditions Simulating the Flow in the Dropping Zone of a Blast Furnace”, Transactions ISIJ, vol. 22, p355-363, 1982
19. J. R. Grace, “Shapes and Velocities of Bubbles Rising in Infinite Liquids”, Transactions of the Institution of Chemical Engineers, vol. 51, p116-120, 1973
20. J. B. Mclaughlin, “Numerical Simulation of Bubble Motion in Water”, Journal of Colloid and Interface Science, vol.184, p614-625, 1996
21. M. E. Weber and D. Bhaga, “Bubbles in Viscous Liquid Shapes, Wakes and Velocities”, The Journal of Fluid Mechanics, vol. 105, p61-85, 1981
22. H. D. Kim, B. Ozturk and R. J. Fruehan, “Slag-Metal Separation in the Blast Furnace Trough”, Icst/Ironmaking Conference Proceedings, p479-492, 1998
23. C. Xu, Y. Sahai, and R. I. L. Guthrie, “Formation of Thermal Accertion in Submerged Gas Injection Processes”, Ironmaking and Steelmaking, vol. 11, No. 2, p101-107 , 1984
24. G. Boxall, A. K. Sabharwal, D. C. G. Robertson, and R. J. Hawkins, ”Injection Phenomena in Extraction and Refining”, A. E. Wraith, ed., University of Newcastle upon Tyne, United Kingdom, pBl-18, 1982
25. S. Ohguchi, and D. G. C. Robertson, “Formation of Porous Accretions Around Tuyere During Gas Injection”, Ironmaking and Steelmaking, vol. 10, no.1, p15-23, 1983
26. S. Oguchi and D. G. C. Robertson, “Injection Phenomena in Extraction and Refining”, A. E. Wraith, ed., University of Newcastle upon Tyne, United Kingdom, p1-37, 1982
27. A. K. Kyllo and G. G. Richard, “Accretion Growth on Single-Pipe Tuyeres: Part I. Model Development and Preliminary Analysis”, Metallurgical Transaction B, vol. 24B, p571-582, 1993
28. A. K. Kyllo and G. G. Richard, “Accretion Growth on Single-Pipe Tuyeres: Part II. Model Results and Discussion”, Metallurgical Transaction B, vol. 24B, p583-591, 1993
29. 張弘儒,“金屬線條之連續鑄造模式分析”,國立成功大學碩士論文,2005年6月
30. M. Iguchi and H. Tokunaga, “Molten Wood’s-Metal Flow in a Cylindrical Bath Agitated by Cold Bottom-Gas Injection”, Metallurgical and Materials Transactions B, vol. 33, No. 5, p694-701, 2002
31. R. J. Fruehan, and S. H. Kim, “Physical Modeling of Liquid/Liquid Mass Transfer in Gas Stirred Ladles”, Metallurgical Transaction B, vol. 18B, p250-259, 1987
32. K. Datta, A. Biswas, and A. Chatterjee, “Modelling of Nugget Formation on Tuyeres During Submerged Gas Injection into Steel Melts”, Ironmaking and Steelmaking, vol. 21, no. 5, p380-390, 1994
33. M. Iguchi, H. Tokunaga and H. Tatemichi, “Bubble and Liquid Flow Characteristics in a Woods Metal Bath Stirred by Bottom Helium Gas Injection”, Metallurgical Transaction B, vol. 28B, p1053-1061, 1997
34. N. B. Ballal and A. Ghosh, “A Water Model Study of Bottom-Blown Oxygen Steelmaking Processes”, Metallurgical Transaction B, vol. 12B, p526-534, 1981
35. J. H. Wei, J. C. Ma, Y. Y. Fan, N. W. Yu, S. L. Yang and S. H. Xiang, “Back-attack Phenomena of Gas Jets with Submerged Horizontally Blowing and Effect on Erosion and Wear of Refractory Lining”, ISIJ International, vol. 39, p779-786, 1999
36. J. L. Liow and N. B. Gray, “Slopping Resulting from Gas Injection in a Peirce-Smith Converter: Water Modeling”, Metallurgical Transaction B, vol. 27, p987-996, 1990
37. M. S. Plesset and A. Prosperetti, “Bubble Dynamics and Cavitation”, Annual Review Fluid Mechanics, vol. 9, p145-185 , 1977
38. J. K. Brimacombe, S.E. Meredith and R. G. H. Lee, “High Pressure Injection of Air into a Peirce-Smith Copper Converter”, Metallurgical Transaction B, vol. 16, p243-250, 1984
39. M. B. Lesser and J. E. Field, “Erosion by Liquid and Solid Impact”, Proceeding of Sixth International Conference, p5-8, 1983
40. J. H. Grevet, J. Szekely and N. Elkaddah, “An Experimental and Theoretical Study of Gas Bubble Driven Circulation Systems”, International Journal of Heat and Mass Transfer, vol. 25, no. 4, p487-497, 1982
41. 吳秀佳,“熔融還原煉鐵爐中鐵浴的流場模擬與水模實驗”,國立成功大學碩士論文,1998年6月
42. 廖志強,“以低溫水模探討雙套管底吹之熔融還原煉鐵爐內固凝物的形成”,國立成功大學碩士論文,1999年6月
43. 曾文宏,“以低溫水模探討熔融還原煉鐵爐內固凝物之形成-單套管底吹”,國立成功大學碩士論文,1999年6月
44. 蘇朝正,“底吹條件對熔融還原爐爐底耐火材沖蝕及鐵/渣混合影響之水模研究”,義守大學碩士論文,2003年6月
45. 蔣承學,“底吹條件對熔融還原爐爐內鐵相混合及耐火材沖蝕影響之水模研究”,義守大學碩士論文,2004年6月
46. Incropera及DeWitt著,張仲卿等編譯,“熱傳遞(Fundamentals of Heat and Mass Transfer) ”,高立圖書有限公司,2003年2月