| 研究生: |
宣崇德 Hsuan, Chung-Te |
|---|---|
| 論文名稱: |
細胞勁度探討:
原子力顯微鏡及有限元素分析 Investigation of Cell Stiffness: Atomic Force Microscopy and Finite Element Analysis |
| 指導教授: |
張志涵
Chang, Chih-Han |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 細胞骨架、有限元素法、勁度、原子力顯微鏡 |
| 外文關鍵詞: | finite element method, stiffness, Atomic force microscopy, cytoskeleton |
| 相關次數: | 點閱:146 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來對於細胞力學的研究越來越多,然而有關細胞力學現象和規律的研究仍然不足。細胞中充滿許多胞器,細胞骨架決定細胞的形狀、運動和遷移且對細胞的機械性質具有重要的影響力;細胞膜、細胞質和細胞核亦對細胞勁度與穩定度有影響。因此本論文建構細胞的三維有限元素模型,藉由結合固體力學與生命科學,探討細胞膜、細胞核及細胞骨架等胞器對於細胞勁度的影響;細胞骨架承受預應力(prestress)後對勁度的影響及細胞在不同貼附狀態下勁度(stiffness)的差異。此外,本研究結合原子力顯微鏡的使用來觀察細胞表面型態與微細結構,並對活體細胞施與機械性質量測,分析細胞不同區域位置的勁度差異,藉以更進一步了解細胞的力學特性。
根據有限元素模擬結果顯示出細胞骨架對細胞勁度的影響最大約32%,細胞骨架承受prestress後對細胞勁度的影響不超過2%,細胞質對細胞勁度的影響遠大於細胞膜與細胞核,細胞在貼附狀況較平坦時勁度較大。而由實驗結果也可以推測出細胞在不同位置有不同的勁度表現,細胞中央區勁度較低而越往邊緣區移動勁度越大,當細胞中受測位置無細胞骨架時細胞高度越小其勁度越大。
本研究建立有限元素模擬與實驗結合分析細胞力學的研究方法,希望未來能經由改變有限元素模型其它參數和幾何外型與改善實驗流程和增加量測數目來獲得更明確的細胞力學結論。
Many researches have focused on the investigating of the mechanical actions of adherent cell, but the fundamental information is still unclear. It is known that alterations in cell shape and structure caused by mechanical loads are critical to cell functions including growth, motility, differentiation and proliferation. It is, therefore, necessary to understand the biomechanical behavior of cell. This study created 3D finite element model of cell which consists of cytoskeleton elements (actins and microtubules networks), cell membrane, nucleus and cytoplasm to investigate the stiffness responses of adherent cell. The aim was to determine the role of cytoskeleton, pre-stress and geometry on cell stiffness. Besides, AFM (Atomic Force Microscopy) experiments were also executed to identify the biomechanical properties of adherent cell.
The results showed that the cytoskeleton indeed would increase the cell stiffness locally while the effect of pre-stress in this model is insignificant with only 2% influence under 4% of pre-strain. The material property of cytoplasm has the maximum effect on cell stiffness among all materials possibly due to its large volume. The stiffness of low profile cell is larger than that of the high profile cell. According to the result of AFM experiment, in general the cell stiffness is smaller in the center region of cell and larger near the edge of the cell.
[01] Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE
“Geometric control of cell life and death”, Science 276, 1997,
1425-1428.
[02] Chicurel ME, Chen CS, Ingber DE “Cellular control lies in the
balance of Forces”, Curr Biol 10, 1998, 232-239.
[03] Alberts, B., et al., “Molecular biology of the cell”, 3rd ed., New
York and London: Garland Publishing, Inc, 1994
[04] Gittes, F., et al., “Flexural rigidity of microtubules and actin
filaments Measured from thermal fluctuations in shape”, J Cell Biol,
120(4), 1993, 923-34.
[05] Bruce Alberts, D.B., Julian Lewis, Martin Raff, Keith Roberts,
James D. Watson, “Molecular Biology of THE CELL”, 3 ed., 1994.
[06] Stamenovic, D. and M.F. Coughlin,“The role of prestress and
architecture of the cytoskeleton and deformability of cytoskeletal
filaments in mechanics of adherent cells”, a quantitative analysis. J
Theor Biol, 201, 1999, 63-74.
[07] 康淵,陳信吉,“ANSYS入門”,全華科技圖書股份有限公司, 2003.
[08] G.Binning, C.F.Quate, C.Gerber, “Atomic force microscopy”,
Phys.Rev.Lett., 56, 1986, 930-933
[09] V.J.Morris, A.R.Kirby, A.P Gunning,“Atomic force microscopy for
biologists”,Imperial College Press:London,1999
[10] NT-MDT Corp., SPM introduction, http://www.ntmdt.ru
[11] 陳哲雄,林俊勳,林紋瑞,吳靖宙,“原子力顯微鏡(Atomic Force
Microscopy)成像原理與中文簡易操作手冊”
[12] D.Stamenovic, D. E. Ingber,“Models of cytoskeletal mechanics of
adherent Cells”, Biomechan Model Mechanobiol, 2002, 95-108
[13] Gibson, L. J.; Ashby, M.F, “ The mechanics of three dimensional
cellular materials”, Proc R Soc Lond A 382, 1982, 43-59
[14] Radmacher, M.“Measuring the elastic properties of biological
samples with the AFM”, IEEE Eng Med Biol Mag 16(2), 1997,
47-57.
[15] Shroff, S. G., D. R. Saner, et al.“Dynamic micromechanical
properties of cultured rat atrial myocytes measured by atomic force
microscopy”, Am J Physiol 269(1 Pt 1), 1995, C286-92.
[16] Stamenovic, D., et al., Cell prestress. II.“Contribution of
microtubules. Am J Physiol Cell Physiol”, 282(3), 2002, p. C617-24.
[17] Dennerll, T.J., et al.,“Tension and compression in the cytoskeleton
of PC-12 neurites. II: Quantitative measurements. J Cell Biol” ,107
(2),1988, p. 665-74.
[18] Wang, N., et al., “Cell prestress. I. Stiffness and prestress are
Closely associated in adherent contractile cells” , Am J Physiol Cell
Physiol, 282(3),2002, p.C606-16.
[19] J. G. McGarry and P.J. Prendergast“A THREE-DIMENSIONAL
FINITE ELEMENT MODEL OF AN ADHERENT EUKARYOTIC
CELL”,European Cell and Materials Vol. 7, 2004, page 27-34
[20] G.T. Charras, P.P. Lehenkari, M.A. Horton“Atomic force microscopy
can be used to mechanically stimulate osteoblasts and evaluate
cellular strain distributions”, Ultramicroscopy 86 , 2001, 85-95
[21] R.E.Mahaffy, S.Park, E. Gerde, y J. Ka¨ s, z and C. K.
Shih“Quantitative Analysis of the Viscoelastic Properties of Thin
Regions of Fibroblasts Using Atomic Force Microscopy”,
Biophysical Journal Volume 86 , 2004, 1777–1793
[22] J. L. HUTTER, J. CHEN, W. K. WAN, S. UNIYAL“Atomic force
microscopy investigation of the dependence of cellular elastic
moduli on glutaraldehyde fixation”, Journal of Microscopy, Vol.219,
Pt 2, 2005, pp.61–68
[23] Hochmuth, R.M. and N. Mohandas, Uniaxial loading of the red-cell
membrane. J Biomech, 5(5), 1972, p. 501-9.