簡易檢索 / 詳目顯示

研究生: 葉文正
Yeh, Wen-Cheng
論文名稱: 裂縫應力強度因子之計算與裂縫成長之隨機性分析
Analysis of Crack Stress Intensity Factors and Stochastic Modeling of Crack Propagation
指導教授: 王永明
Wang, Yung-Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 113
中文關鍵詞: 無元素法應力強度因子裂縫成長
外文關鍵詞: meshless methods, stress intensity factors, crack propagation
相關次數: 點閱:153下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以無網格法計算裂縫之應力強度因子,並考慮材料韌度之隨機性進行裂縫成長之隨機性分析。在應力強度因子計算上考量裂縫尖端處之應力奇異性,在裂縫尖端附近區域於位移函數中加入應力奇異性項次,於裂縫尖端處外則僅使用一般再生核形狀函數,利用微分再生核近似法(Differential Reproducing Kernel Approximation Method, DRKM)配合置點法建立聯立方程組以最小平方法解得節點變位及應力強度因子。在數值算例中,則分析求解不同型式裂縫問題,包括邊緣水平裂縫、邊緣傾斜裂縫、中央水平裂縫、中央傾斜裂縫以及邊緣雙裂縫等問題,並討論其分析精度。
    在裂縫成長的隨機性分析上,則考量材料韌度受製造過程及其他因素影響下,假設材料韌度為一隨機性分布,並以數值方式模擬材料韌度之隨機性,再依應力強度因子及材料韌度決定裂縫成長方向,以統計方法分析於該隨機性影響下裂縫成長方向之隨機變異性;最後以隨機方式模擬裂縫成長軌跡並對照最大環向應力準則之軌跡,以探討材料韌度之變異性等因素對裂縫成長之隨機性的影響。

    In this thesis we use a meshless method to compute the stress intensity factor of crack and develop a stochastic model for predicting of crack propagation which is based on material toughness uncertainty. The meshless method is adapting point collocation with differential reproducing kernel approximation method (DRKM) to capture the stress singularity near the crack tip, the singular term will be added to the crack tip to model the high gradient of the stress.
    In the stochastic modeling of crack propagation, we consider the uncertainty of material toughness by supposing the material toughness near the crack tip have random properties along the circumferential direction, thus the direction and length of crack propagation will be determined by the stress intensity factor and the material toughness along the circumferential direction.
    The trajectory of crack propagation of the stochastic model will be compared with maximum circumferential stress criterion to illustrate the effect of stochastic properties of material toughness.

    摘要 I ABSTRACT II 誌謝 III 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2文獻回顧 3 1-3 本文架構 9 第二章 理論基礎 11 2-1 離散的再生核近似 11 2-2 再生核形狀函數的微分 13 2-3 加權函數與鄰近點的選取 17 第三章 微分再生核近似法於裂縫應力強度因子之應用 20 3-1 應力奇異性項次 20 3-2二維平板控制方程式 23 3-3 邊界條件 25 3-3-1 自由端 25 3-3-2 輥支承 26 3-3-3 固定端 27 3-4 局部區域加入奇異性項次 28 第四章 裂縫應力強度因子之數值範例 33 4-1水平邊緣裂縫 33 4-2傾斜邊緣裂縫 35 4-3水平邊緣雙裂縫 36 4-4 中央水平裂縫 37 4-5 中央傾斜裂縫 38 第五章 裂縫成長方向變異性之統計分析 40 5-1 無限板中央水平裂縫 42 5-2 中央傾斜裂縫 45 5-3 水平邊緣裂縫 49 5-4傾斜邊緣裂縫 51 第六章 裂縫成長模擬之統計分析 57 6-1傾斜邊緣裂縫之裂縫成長軌跡 57 第七章 結論 68 參考文獻 71 表目錄 【表4-1】尖端點移出距離D之比較 78 【表4-2】水平邊緣裂縫不同裂縫長度之K值 78 【表4-3】傾斜邊緣裂縫不同裂縫長度之K值 78 【表4-4】水平邊緣雙裂縫不同裂縫長度之K值 79 【表4-5】中央水平裂縫不同裂縫長度之K值 79 【表4-6】中央傾斜裂縫不同傾斜角度之K值 79 【表5-1】二次式對應之係數 80 圖目錄 【圖2-1】影響半徑與鄰近點選取 73 【圖3-1】裂縫開裂型態 74 【圖3-2】裂縫尖端應力狀態 74 【圖3-3】 二維等向性平板受IN-PLANE FORCE示意圖 75 【圖3-4】自由端邊界條件示意圖 75 【圖3-5】輥支承邊界條件示意圖 75 【圖3-6】裂縫尖端環形佈點示意圖( 點為代入連續條件之點) 76 【圖4-1】裂縫與裂縫尖端佈點示意圖 77 【圖4-2】水平邊緣裂縫示意圖 77 【圖4-3】水平邊緣裂縫佈點示意圖 78 【圖4-4】水平邊緣裂縫不同裂縫長度之K值 78 【圖4-5】水平邊緣裂縫應力圖 79 【圖4-6】水平邊緣裂縫尖端處應力圖 79 【圖4-7】傾斜邊緣裂縫示意圖 80 【圖4-8】傾斜邊緣裂縫佈點示意圖 80 【圖4-9】傾斜邊緣裂縫不同裂縫長度之K值 81 【圖4-10】傾斜邊緣裂縫應力圖 81 【圖4-11】傾斜邊緣裂縫尖端處應力圖 82 【圖4-12】水平邊緣雙裂縫示意圖 82 【圖4-13】水平邊緣雙裂縫佈點示意圖 83 【圖4-14】水平邊緣雙裂縫不同裂縫長度之K值 83 【圖4-15】水平邊緣雙裂縫應力圖 84 【圖4-16】水平邊緣雙裂縫尖端處應力圖 84 【圖4-17】中央水平裂縫示意圖 85 【圖4-18】中央水平裂縫佈點示意圖 85 【圖4-19】中央水平裂縫不同裂縫長度之K值 86 【圖4-20】中央水平裂縫應力圖 86 【圖4-21】中央水平裂縫尖端處應力圖 87 【圖4-22】中央傾斜裂縫示意圖 87 【圖4-23】中央傾斜裂縫佈點示意圖 88 【圖4-24】中央傾斜裂縫不同傾斜角度之K值 88 【圖4-25】中央傾斜裂縫應力圖 89 【圖4-26】中央傾斜裂縫尖端處應力圖 89 【圖5-1】材料韌度變異性及其在空間變異性示意圖 90 【圖5-2】受張力及剪力聯合作用之二維無限平板示意圖 90 【圖5-3】無限板中央水平邊緣裂縫之材料韌度在空間變異性參數與裂縫成長角度之標準差關係曲線 91 【圖5-4】無限板中央水平裂縫尖端環向等效應力強度因子示意圖 91 【圖5-5】裂縫成長方向決定準則示意圖(K2/K1=0.5) 92 【圖5-6】裂縫成長方向決定準則示意圖(K2/K1=10) 92 【圖5-7】裂縫成長方向決定準則示意圖(K2/K1=50) 93 【圖5-8】中央傾斜裂縫之材料韌度在空間變異性參數與裂縫成長角度之標準差關係曲線 93 【圖5-9】中央傾斜裂縫之材料韌度參數與裂縫成長角度 94 【圖5-10】迴歸分析之材料韌度在空間變異性參數與裂縫成長角度之標準差關係曲線圖 94 【圖5-11】水平邊緣裂縫之材料韌度在空間變異性參數與裂縫成長角度之標準差關係曲線 95 【圖5-12】水平邊緣裂縫之材料韌度參數與裂縫成長角度 95 【圖5-13】傾斜邊緣裂縫之材料韌度在空間變異性參數與裂縫成長角度之標準差關係曲線 96 【圖5-14】傾斜邊緣裂縫之材料韌度參數與裂縫成長角度 96 【圖6-1】第五、十、十五裂縫增量階段之裂縫成長軌跡示意圖(n=5) 97 【圖6-2】第五裂縫增量階段於裂縫尖端處X向座標差值與頻率(次數)之分布關係圖(n =5) 97 【圖6-3】第十裂縫增量階段於裂縫尖端處X向座標差值與頻率(次數)之分布關係圖(n=5) 98 【圖6-4】第十五裂縫增量階段於裂縫尖端處X向座標差值與頻率(次數)之分布關係圖(n=5) 98 【圖6-5】第五、十、十五裂縫增量階段於裂縫尖端處X向座標差值與頻率(次數)之機率分布曲線(n=5) 99 【圖6-6】第五裂縫增量階段於裂縫尖端處Y向座標差值與頻率(次數)之分布關係圖(n=5) 99 【圖6-7】第十裂縫增量階段於裂縫尖端處Y向座標差值與頻率(次數)之分布關係圖(n=5) 100 【圖6-8】第十五裂縫增量階段於裂縫尖端處Y向座標差值與頻率(次數)之分布關係圖(n=5) 100 【圖6-9】第五、十、十五裂縫增量階段於裂縫尖端處Y向座標差值與頻率(次數)之機率分布曲線(n=5) 101 【圖6-10】第五、十、十五裂縫增量階段之裂縫成長軌跡示意圖(n=17) 101 【圖6-11】第五裂縫增量階段於裂縫尖端處X向座標差值與頻率(次數)之分布關係圖(n=17) 102 【圖6-12】第十裂縫增量階段於裂縫尖端處X向座標差值與頻率(次數)之分布關係圖(n=17) 102 【圖6-13】第十五裂縫增量階段於裂縫尖端處X向座標差值與頻率(次數)之分布關係圖(n=17) 103 【圖6-14】第五、十、十五裂縫增量階段於裂縫尖端處X向座標差值與頻率(次數)之機率分布曲線(n=17) 103 【圖6-15】第五裂縫增量階段於裂縫尖端處Y向座標差值與頻率(次數)之分布關係圖(n=17) 104 【圖6-16】第十裂縫增量階段於裂縫尖端處Y向座標差值與頻率(次數)之分布關係圖(n=17) 104 【圖6-17】第十五裂縫增量階段於裂縫尖端處Y向座標差值與頻率(次數)之分布關係圖(n=17) 105 【圖6-18】第五、十、十五裂縫增量階段於裂縫尖端處Y向座標差值與頻率(次數)之機率分布曲線(n=17) 105 【圖6-19】第五、十、十五裂縫增量階段之裂縫成長軌跡示意圖(n=1000) 106 【圖6-20】第五裂縫增量階段於裂縫尖端處X向座標差值與頻率(次數)之分布關係圖(n=1000) 106 【圖6-21】第十裂縫增量階段於裂縫尖端處X向座標差值與頻率(次數)之分布關係圖(n=1000) 107 【圖6-22】第十五裂縫增量階段於裂縫尖端處X向座標差值與頻率(次數)之分布關係圖(n=1000) 107 【圖6-23】第五、十、十五裂縫增量階段於裂縫尖端處X向座標差值與頻率(次數)之機率分布曲(n=1000) 108 【圖6-24】第五裂縫增量階段於裂縫尖端處Y向座標差值與頻率(次數)之分布關係圖(n=1000) 108 【圖6-25】第十裂縫增量階段於裂縫尖端處Y向座標差值與頻率(次數)之分布關係圖(n=1000) 109 【圖6-26】第十五裂縫增量階段於裂縫尖端處Y向座標差值與頻率(次數)之分布關係圖(n=1000) 109 【圖6-27】第五、十、十五裂縫增量階段於裂縫尖端處Y向座標差值與頻率(次數)之機率分布曲線(n=1000) 110 【圖6-28】增量階段與裂縫尖端處X向座標差值之平均值關係圖 110 【圖6-29】裂縫成長方向決定準則示意圖(n=5) 111 【圖6-30】裂縫成長方向決定準則示意圖(n=17) 111 【圖6-31】裂縫成長方向決定準則示意圖(n=1000) 112 【圖6-32】增量階段與裂縫尖端處Y向座標差值之平均值關係圖 112 【圖6-33】增量階段與裂縫尖端處X向座標差值之標準差關係圖 113 【圖6-34】增量階段與裂縫尖端處Y向座標差值之標準差關係圖 113

    Aliabadi M. H., Rooke D.P. and Cartwright D.J. (1987), “Mixed-mode Buckner weight functions using boundary element analysis,” International Journal of Fracture, 34 pp.131-147.
    Al-Rubaie K.S., Barroso E.K. and Goderfroid L.B. (2008), “Statistical modeling of fatigue crack growth rate in pre-strained 7475-T7351 aluminum alloy,” Materials science and engineering A, 486 pp.585-595.
    Belytschko T., Gu L. and Lu Y. Y. (1994), “Fracture and crack growth by element-free Galerkin methods,” Modelling and Simulation in Materials Science and Enginering, 2 pp.519-534.
    Belytschko T., Gu L. and Lu Y. Y. (1994), “Element-free Galerkin methods,” International Journal for Numerical Methods in Engineering, 37 pp.229-256.
    Belytschko T., Lu Y.Y., Gu L. and Tabbara M. (1995), “Element-free Galerkin methods for static and dynamic fracture,” International Journal of Solids and Structures, 32 pp.2547-2570.
    Belytschko T., Lu Y. Y. and Gu L. (1995), “Crack propagation by element-free Galerkin methods,” Engineering Fracture Mechanics, 51 (2) pp.295-315.
    Belytschko T., Organ D.,Krongauz Y. (1995), “A coupled finite element- element-free Galerkin methods,” Computational Mechanics, 17 pp.186-195.
    Belytschko T., Fleming M. (1999), “Smoothing, enrichment and contact in the element free Galerkin method,” Computers and Structures, 71 pp.173-195.
    Bouchard P.O., Bay F. and Chastel Y. (2003), “Numerical modeling of crack propagation: automatic remeshing and comparison of different criteria,” Computer methods in applied mechanics and engineering, 192 pp.3887-3908.
    Bian L.C., Fawaz Z. and Behdinan K. (2008), “An improved model for predicting the crack size and plasticity dependence of fatigue crack propagation,” International Journal of Fatigue, 30 pp.1200-1210.
    Chen J. S., Wu C. T. and Liu W. K. (1996), “Reproducing Kernel Particle Methods for Large Deformation Analysis of non-linear structures,” Computer Method in Applied Mechanics And Engineering, 139 pp.195-227.
    Chudnovsky A., Kunin B. and Gorelik M. (1997), “Modeling of brittle fracture based on the concept of crack trajectory ensemble,” Engineering Fracture Mechanics, 58 pp.437-457.
    Chen G., Rahman S. and Park Y.H. (2001), “Shape sensitivity analysis in Mixed-mode fracture,” Computational Mechanics, 27 pp.282-291.
    Duflot M. and Nguyen-Dang H. (2004), “A meshless method with enriched weight functions for fatigue crack growth,” International Journal for Numerical Methods in Engineering, 59 pp.1945-1961.
    Duflot M. and Nguyen-Dang H. (2004), “Fatigue crack growth analysis by an enriched meshless method,” Journal of Computational and Applied Mathematics, 168 pp.155-164.
    Duflot M. (2006), “A meshless method with enriched weight functions for three-dimensional crack propagation,” International Journal for Numerical Methods in Engineering, 65 pp.1970-2006.
    Eshelby J.D., Read ,W. T.,Shockley W. (1993), “Anisotropic elasticity with applications to dislocation theory,” Acta Metallurgica, 1 pp.251-259.
    Fleming M., Chu Y.A., Moran And B.,Belytschko T. (1997), “Enriched element-free Galerkin methods for crack tip fields,” International Journal for Numerical Methods in Engineering, 40 pp.1483-1504.
    Griffith A.A. (1924), The phenomena of rupture and flow in solids,” Philosophical Transactions of the Royal Society of London A221,” pp.163-198.
    Gu Y.T. and Zhang L.C. (2008), “Coupling of the meshfree and finite element methods for determination of the crack tip fields,” Engineering Fracture Mechanics, 75 pp.986-1004.
    Hong Y.J., Xing J. and Wang J.B. (1999), “Statistical analysis of fatigue crack growth for 16MnR steel under constant amplitude loads,” Pressure Vessels and Piping, 76 pp.379-385.
    Harlow D.G., Wei R.P., Sakai T. and Oguma N. (2006), “Crack growth based probability modeling of S-N response for high strength steel,” International Journal of Fatigue, 28 pp.1479-1485.
    Huynh J., Molent L. and Barter S. (2008), “Experimentally derived crack growth models for different stress concentration factors,” International Journal of Fatigue, 30 pp.1766-1786.
    Irwin G.R. (1957), “Analysis of stress and strains near the end of a crack traversing a plate,” Journal of Applied Mechanics, 24 pp.361-364.
    Jones R., Molent L. and Pitt S. (2008), “Similitude and the Paris crack growth law,” International Journal of Fatigue, 30 pp.1873-1880.
    Lucy L.B. (1977), “A numerical approach to the testing of the fission hypothesis”, The Astronomical Journal, 8 pp.1013-1024.
    Lu Y. Y., Belytschko T., Gu L. (1994), “A new implementation of element-free Galerkin methods,” Computer Method in Applied Mechanics And Engineering,” 113 pp.397-414.
    Libersky L.D., Petschek A.G. (1995), “Calculation of oblique impact and fracture of tungsten cubes using smoothed particle hydrodynamics,” International Journal of Impact Engineering, 17 pp.661.
    Liu W. K., Jun S. and Zhang Y. F. (1995), “Reproducing kernel particle methods,” International Journal for Numerical Methods in Engineering, 20 pp.1081-1106.
    Lee G.H., Chung H.J. and Choi C.K. (2003), “Adaptive crack propagation analysis with the element-free Galerkin method,” International Journal for Numerical Methods in Engineering, 56 pp.331-350.
    Lee S.H. and Yoon Y.C. (2003), “An improved crack analysis technique by element-free Galerkin method with auxiliary supports,” International Journal for Numerical Methods in Engineering, 56 pp.1291-1314.
    Lee S.H. and Yoon Y. C. (2004), “Meshfree point collocation method for elasticity and crack problems,” International Journal for Numerical Methods in Engineering, 61 pp.22-48.
    Li S.C. and Cheng Y.M. (2005), “Enriched meshless manifold method for two-dimensional crack modeling,” Theoretical and applied fracture mechanics, 44 pp.234-248.
    Nalroles B., Touzot G. and Villon P.(1992), “Generalizing the finite element method diffuse approximation and diffuse element,” Computers in mechanical engineering, 10 pp.307-318.
    Pavlou D.G., Labeas G.N., Vlachakis N.V. and Pavlou F.,G. (2003), “Fatigue crack propagation trajectories under mixed-mode cyclic loading,”Engineering Structures, 25 pp.869-875.
    Rice J.R.(1968), “A path independent integral and approximate analysis of stain concentration by notches and cracks,” Journal of Applied Mechanics, 36 pp.379-386.
    Rabczuk T. and Belytschko T. (1987), “Cracking particles: a simplified meshfree method for arbitrary evolvig cracks,” International Journal for Numerical Methods in Engineering, 61 pp.2316-2343.
    Rao B.N. and Rahman S. (2000), “An efficient meshless method for fracture analysis of cracks,” Computational Mechanics, 26 pp.398-408.
    Rashid M.M. and Tvergaard V. (2008), “Crack trajectory near a weld: Modeling and simulation,” Engineering Fracture Mechanics, 72 pp.560-570.
    Ting T. C. T. (1986), “Explicit solution and invariance of the singularities at an interface crack in anisotropic composites,” International Journal of Solids and Structures, 22 pp.965-983.
    Ting T. C. T. (1996), Anisotropic elasticity: theory and applications,., New York: Oxford University Press.
    Tada H., Paris P. C. and Irwin G. R. (2000), The Stress Analysis of Cracks Handbook (Third Edition).
    Ventura G., Xu J.X. and Belytschko T. (2002), “A vector level set method and new discontinuity approximations for crack growth by EFG,” International Journal for Numerical Methods in Engineering,54 pp.923-944.
    Williams M. L.(1952), “Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension,” Journal of Applied Mechanics, 74 pp.526-528.
    Wu. W.F. and Ni C.C. (2007), “Statistical aspects of some fatigue crck growth data,” Engineering Fracture Mechanics, 74 pp.2952-2963.
    Yoon Y.C., Lee S.H. and Belytschko T. (2006), “Enriched meshfree collocation method with diffuse derivatives for elastic fracture,” Computers and Mathematics with Applications, 51 pp.1349-1366.
    Zapatero J., Moreno B., Gonzalez-Herrera A. and Dominguez J. (2005), “Numerical and experimental analysis of fatigue crack growth under random loading,” International Journal of Fatigue, 27 pp.878-890.
    Zhang Z., Liew K.M., Cheng Y. and Lee Y.Y. (2008), “Analyzing 2D fracture problems with the improved element-free Galerkin method,” Engineering Analysis with Boundary Elements, 32 pp.241-250.

    下載圖示 校內:2013-08-30公開
    校外:2013-08-30公開
    QR CODE