簡易檢索 / 詳目顯示

研究生: 邱鈺婷
Chiu, Yu-Ting
論文名稱: 使用校準注入技巧的快速起振石英振盪器
Quick Start-Up Crystal Oscillator Using Calibrated Injection Technique
指導教授: 鄭光偉
Cheng, Kuang-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 62
中文關鍵詞: 石英振盪器頻率較準器快速起振石英振盪器延遲鎖相迴路
外文關鍵詞: Crystal oscillator, XO, Frequency calibrator, Fast start-up crystal oscillator, Quick start-up crystal oscillator, Delay-locked loop
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石英震盪器可以提供相當穩定的參考訊號,所以在通訊系統中扮演重要的角色。隨著物聯網需求的增加,無線感測網路往往使用電池供電,為了更長的使用時間,低功耗變得非常受重視。循環工作方法常用於無線通訊網路,使電路在大部分的時間處於待機睡眠狀態,在需要的時候才觸發起動。由於石英振盪器的啟動時間遠大於收發機中的其他電路,會拖累整體的啟動時間以及啟動所需耗能。在本篇論文中,我們採用兩階段注入技巧配合頻率與相位校正方法來加速石英震盪器的時間起振。經由本方法,配合10 MHz的石英晶體,起振時間由9.21毫秒縮減為55微秒,起振所需耗能僅57豪微焦耳。本電路實現於台積電180奈米互補式金屬氧化物半導體製程,配合1.2伏特的電源電壓。

    Crystal oscillators (XO) play an important role in communication systems as a reliable reference signal. In recent years, the demand of Internet-of-Thing (IoT) is increasing rapidly. Since the wireless sensor node is usually powered by batteries, ultra-low-power consumption has become an important specification of IoT devices. The duty-cycled operation is a superior solution for ultra-low-power wireless radio, most of the components in the radio remain sleeping during the standby mode and are only activated when needed. When it comes to the start-up process of duty-cycling transceivers, crystal oscillators take up the vast majority of the start-up time since they take relatively long time (~ms) to start-up. In this thesis, we adopts 2-step injection technique with a frequency and phase alignment calibration method to improve the start-up time of the crystal oscillator. For a 10 MHz crystal, the proposed technique reduces the start-up time from 9.21 ms to 55 s and consume only 57 nJ of start-up energy. The prototype of the proposed method is designed in TSMC 180-nm CMOS technology with 1.2 V supply voltage.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Overview 2 Chapter 2 Literature Review of Quick Start-up Crystal Oscillators 3 2.1 Conventional Pierce Crystal Oscillator and Its Start-Up Behavior 3 2.1.1. Crystal Resonator 3 2.1.2. Pierce Crystal Oscillator 5 2.1.3. Start-Up Characteristics of Crystal Oscillator 6 2.2 Prior Art of Quick Start-up Crystal Oscillators 8 2.2.1. Precisely Timed Injection Technique 8 2.2.2. Chirp Injection Technique 11 2.2.3. Dithered Injection Technique 13 2.2.4. 2-step Injection Technique 15 2.2.5. Synchronized Injection Technique 17 2.2.6. Self-timed Injection Technique 18 2.2.7. Dynamic Load Technique 18 Chapter 3 Proposed Quick Start-up Crystal Oscillator 20 3.1 Operating Principle of Frequency/Phase Calibrator 21 3.2 Ring Oscillator and Calibration Circuits 27 3.3 Phase Detector and Charge Pump 32 3.4 Crystal Oscillator and Injection Buffer 36 3.5 Timing Control Circuit and Bias Circuit 40 3.6 Layout and floor Plan 42 Chapter 4 Simulation and Measurement Results 44 4.1 Simulation Results 44 4.2 Measurement Setup 53 4.3 Measurement Results 55 Chapter 5 Conclusion and Future Work 57 5.1 Conclusion 57 5.2 Future Work 57 5.2.1. Area Optimization 57 5.2.2. Adopt Synchronized Injection Technique 58 Reference 60

    [1] K. Philips, “Ultra low power short range radios: Covering the last mile of the IoT,” in Proc. 40th Eur. Solid State Circuits Conf. (ESSCIRC), Sep. 2014, pp. 51–58.
    [2] E. A. Vittoz, M. G. R. Degrauwe, and S. Bitz, “High-performance crystal oscillator circuits: Theory and application,” IEEE J. Solid-State Circuits, vol. 23, no. 3, pp. 774–783, Jun. 1988.
    [3] Willy M. C. Sansen, Analog Design Essentials, Springer Verlag, 2006.
    [4] M. Toki and Y. Tsuzuki, “Analysis of Start-up Characteristics of CMOS Crystal Oscillators”, in IEEE frequency contorl symposium, May 1992, pp. 448-452.
    [5] A. Rusznyak, “Start-Up Time of CMOS Oscillators”, IEEE Transactions on Circuits and Systems, vol. 34, no.3, pp. 259-268, March 1987.
    [6] S. Iguchi, H. Fuketa, T. Sakurai, and M. Takamiya, “Variation-tolerant quick-start-up CMOS crystal oscillator with chirp injection and negative resistance booster,” IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 496–508, Feb. 2016.
    [7] H. Esmaeelzadeh and S. Pamarti, “A quick startup technique for high-Q oscillators using precisely timed energy injection,” IEEE J. Solid- State Circuits, vol. 53, no. 3, pp. 692–702, Mar. 2018.
    [8] H. Esmaeelzadeh and S. Pamarti, “A precisely-timed energy injection technique achieving 58/10/2μs start-up in 1.84/10/50MHz crystal oscillators,” in Proc. IEEE Custom Integr. Circuits Conf. (CICC), Apr./May 2017, pp. 1–4.
    [9] S. Iguchi, H. Fuketa, T. Sakurai, and M. Takamiya,, “92% Start-up Time Reduction by Variation-Tolerant Chirp Injection (CI) and Negative Resistance Booster (NRB) in 39MHz Crystal Oscillator”, in IEEE Symposium on VLSI Circuits, Digest of Technical Papers, June 2014, pp. 236-237.
    [10] K. M. Megawer et al., "A Fast Startup CMOS Crystal Oscillator Using Two-Step Injection," IEEE Journal of Solid-State Circuits, vol. 54, no. 12, pp. 3257-3268, Dec. 2019.
    [11] A. Karimi-Bidhendi, H. Pu and P. Heydari, "Study and Design of a Fast Start-Up Crystal Oscillator Using Precise Dithered Injection and Active Inductance," IEEE Journal of Solid-State Circuits, vol. 54, no. 9, pp. 2543-2554, Sept. 2019.
    [12] K. M. Megawer et al., “18.5 A 54MHz crystal oscillator with 30×start- up time reduction using 2-step injection in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech, Papers, Feb. 2019, pp. 302–304.
    [13] K.-M. Lei, P.-I. Mak, M.-K. Law, and R. P. Martins, “A regulation- free sub-0.5-V 16-/24-MHz crystal oscillator with 14.2-nJ startup energy and 31.8-μW steady-state power,” IEEE J. Solid-State Circuits, vol. 53, no. 9, pp. 2624–2635, Sep. 2018.
    [14] K.-M. Lei, P.-I. Mak, M.-K. Law, and R. P. Martins, “A regulation-free sub-0.5V 16/24 MHz crystal oscillator for energy-harvesting BLE radios with 14.2nJ startup energy and 31.8W steady-state power,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech, Papers, Feb. 2018, pp. 52–54.
    [15] D. Griffith, J. Murdock, and P. T. Røine, “A 24 MHz crystal oscillator with robust fast start-up using dithered injection,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech, Papers, Jan./Feb. 2016, pp. 104–105.
    [16] B. Verhoef, J. Prummel, W. Kruiskamp and R. Post, "18.6 A 32MHz Crystal Oscillator with Fast Start-up Using Synchronized Signal Injection," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019, pp. 304-305.
    [17] J. B. Lechevallier, R. A. R. Van Der Zee and B. Nauta, "Fast & Energy Efficient Start-Up of Crystal Oscillators by Self-Timed Energy Injection," IEEE Journal of Solid-State Circuits, vol. 54, no. 11, pp. 3107-3117, Nov. 2019.
    [18] M. Ding et al., "5.3 A 95µW 24MHz digitally controlled crystal oscillator for IoT applications with 36nJ start-up energy and >13× start-up time reduction using a fully-autonomous dynamically-adjusted load," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech, Papers, Feb. 2017, pp. 90-91.
    [19] H. Yoon, S. Park and J. Choi, "A Low-Jitter Injection-Locked Multi-Frequency Generator Using Digitally Controlled Oscillators and Time-Interleaved Calibration," IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1564-1574, June 2019.
    [20] Behzad Razavi, Design of Analog CMOS Integrated Circuits, 2/e, McGraw-Hill Education, 2016.
    [21] Neil H.E. Weste, CMOS VLSI design, Pearson, 2010.
    [22] Y.-K. Tsai and L.-H. Lu, “A 51.3-MHz 21.8-ppm/◦C CMOS relaxation oscillator with temperature compensation,” IEEE Transactions on Circuits and Systems II, Exp. Briefs, vol. 64, no. 5, pp. 490–494, May 2017.
    [23] W.-H. Lee, J.-D. Cho, and S.-D. Lee, “A high speed and low power phase-frequency detector and charge-pump,” in Proc. Asia and South Pacific Design Automation Conf., Jan. 1999, pp. 269–272.
    [24] T.-H. Lin, C.-L. Ti, and Y.-H. Liu, “Dynamic Current-Matching Charge Pump and Gated-Offset Linearization Technique for Delta-Sigma Fractional-N PLLs” IEEE Transactions on Circuits and Systems—I: regular papers, vol. 56, no. 5, pp. 877-885, May 2009.
    [25] M. Miyahara, Y. Endo, K. Okada and A. Matsuzawa, "A 64μs Start-Up 26/40MHz Crystal Oscillator with Negative Resistance Boosting Technique Using Reconfigurable Multi-Stage Amplifier," in IEEE Symposium on VLSI Circuits, June 2018, pp. 115-116.
    [26] M. Ding, Y. Liu, P. Harpe, C. Bachmann, K. Philips and A. Van Roermund, "A Low-Power Fast Start-Up Crystal Oscillator With an Autonomous Dynamically Adjusted Load," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 4, pp. 1382-1392, April 2019.
    [27] Y. Kwon, S. Park, T. Park, K. Cho and H. Lee, "An Ultra Low-Power CMOS Transceiver Using Various Low-Power Techniques for LR-WPAN Applications," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 2, pp. 324-336, Feb. 2012.
    [28] Abracon LLC., “Ultra-low ESR HC49/US (AT49) SMD Microprocessor Crystal”, ABLS-LR-10.000MHZ-T datasheet, April, 2016.

    無法下載圖示 校內:2025-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE