簡易檢索 / 詳目顯示

研究生: 徐榮彰
Hsu, Rong-Chang
論文名稱: 以溶膠-凝膠法合成ZnO與IZO薄膜及其應用在UV波段光檢測器之研究
The study of sol-gel synthesized ZnO and IZO thin films and its applied in UV photodetectors
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 86
中文關鍵詞: 氧化鋅溶膠凝膠法
外文關鍵詞: sol-gel, ZnO
相關次數: 點閱:54下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究將分成三個部分來討論。第一部分是氧化鋅薄膜材料分析,主要以「溶膠-凝膠法」成功的在石英玻璃基板上成長氧化鋅透明薄膜。在氧化鋅薄膜的表現上,透過X-ray繞射儀了解其結晶性、SEM圖分析其表面結構,並進行霍爾量測測量氧化鋅薄膜的濃度、載子遷移率以及電阻率,同時去做光激發螢光量測及穿透率光譜儀的分析發現在UV波段有一氧化鋅的Near band emission(NBE)發光。另外在溶膠-凝膠法製成的氧化鋅膜實驗結果中發現有氧化鋅奈米線的成長,這是首次在無任何金屬觸媒的幫助下利用溶膠-凝膠法成功的成長氧化鋅奈米線。
    第二部份則為以溶膠-凝膠法製作摻雜濃度為5at.%、7at.%、9at.%的IZO薄膜去探討材料分析,從實驗結果中看出掺銦之後的IZO薄膜在光特性、微結構特性及電特性上的確有明顯的改善,尤其是摻雜濃度為9at.%的IZO薄膜表現最佳。另外在IZO薄膜的表現上,透過X-ray繞射儀、SEM、霍爾量測、光激發螢光量測及穿透率光譜儀的分析以期薄膜能具有高透明、低電阻率的光學和電特性。
    第三部分則是針對以溶膠凝膠法成長之氧化鋅奈米線薄膜為主的金半金光檢測器,主要目的是希望溶膠凝膠法製作的氧化鋅奈米線薄膜也能成功的製作出一製程簡單且成本低廉的光檢測器。此光檢測器使用指叉狀結構電極並用鎳/金當做電極材料,並使用HP-4155機台以及氙燈系統進行光、暗電流及光響應之量測。

    This study introduced a simple approach for forming ZnO thin films. Here, the dissertation was divided into three parts, first and second part was the discussion of ZnO and IZO thin films, and third part was the discussion of ZnO based metal-semiconductor-metal (MSM) photodetectors. In first part, we successful deposited ZnO thin films on quartz substrate by using sol-gel method. The sol-gel synthesized ZnO films presented good crystalline and optical characteristics through the measurement of XRD, SEM, Hall and PL. Besides, in this study, the ZnO nanowires had been successfully prepared without metallic catalysis by sol-gel process.
    Next part, IZO films was prepared by doping indium into ZnO and choice three different concentration for 5, 7, 9 at.% respectively. From material analysis, the optical, electrical and microstructural properties indeed were improved by doping indium. And the XRD, SEM, Hall, PL and UV-Vis spectrometer measurements showed that the IZO thin films present a good TCO thin film characteristics with high transparency and low resistivity.
    Last part, the ZnO nanowires film based UV photodetectors was fabricated by using IDT (interdigital) MSM structure with Ni/Au as electrodes. The destination we discussed was that use sol-gel derived ZnO nanowires thin films to fabricate a simple and low-cost UV photodetectors, in order not only to understand the effect of different crystallizations, but also the contribution of the sol-gel derived ZnO basement. The photo/ dark current and responsivity were measured by HP-4155 and Xe-lamp system.

    Chapter 1 Introduction 1 1-1 Properties of ZnO 1 1-2 Transparent conductive oxide (TCO) films 3 1-3 Background and motivation 5 1-4 Organization 10 Chapter 2 Theory and Measurement Systems 11 2-1 Use the sol-gel method to synthesize thin films 11 2-1-1 Introduction 11 2-1-2 Principle of spin coating 12 2-1-3 Drying and annealing 13 2-2 The principle of TCO films 14 2-2-1 Principle of conductive mechanism 14 2-2-2 Principle of transparent mechanism 17 2-3 Introduction of measurement system 20 2-3-1 X-ray diffraction (XRD) system 20 2-3-2 Scanning electron microscope (SEM) 20 2-3-3 Hall measurement system 22 2-3-5 Energy dispersive spectrometer (EDS) system 22 2-3-6 The responsivity measurement system 23 Chapter 3 Experimental Details 28 3-1 Chemical and instruments 28 3-1-1 Chemical 28 3-1-2 Instruments 28 3-2 The fabrication of ZnO thin films 30 3-2-1 Experimental flow chart 30 3-2-2 ZnO sol-gel process 30 3-2-3 ZnO thin film process 31 3-3 The fabrication of IZO thin films 32 3-3-1 Experimental flow chart 32 3-2-2 IZO sol-gel process 32 3-2-3 IZO thin film process 33 Chapter 4 The Analysis and Discussion of ZnO and IZO Thin Films 34 4-1 Results and analysis of ZnO thin films 34 4-1-1 TGA and DSC analysis 34 4-1-2 Structural characteristics of different atmosphere 34 4-1-3 Structural characteristics of different temperature35 4-1-4 Discussion of ZnO nanowires films mechanism 37 4-1-5 Discussion of ZnO nanowires films under lower heat-treatment 38 4-1-6 Optical and electrical properties 39 4-2 Results and analysis of IZO thin films 40 4-2-1 Microstructural characteristics 40 4-2-2 EDS analysis42 4-2-3 Electrical properties 43 4-2-4 Optical properties 44 4-3 The effect of Thermal Fatigue experiment to IZO thin films 45 4-3-1 Introduction 45 4-3-2 Results and discussion 45 Chapter 5 The Fabrication and Characteristics of ZnO MSM UV Potodetectors 65 5-1 Introduction 65 5-2 Theory of the MSM photodetectors 67 5-3 The fabrication of ZnO MSM photodetectors 69 5-4 The characteristics of the MSM photodetectors 70 5-5 The responsivity and rejection ratio of MSM photodetectors 70 Chapter 6 Conclusion and Future Prospect 78 6-1 Conclusion 78 6-2 Future prospect 79 References 81

    [1] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
    [2] D. W. Palmer, http://www.semiconductors.co.uk, (2002).
    [3] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 73, 1038 (1998).
    [4] D. C. Look, Mater. Sci. Eng. B, 80, 383 (2001).
    [5] D. C. Look, D. C. Reynolds, J. W. Hemski, R. L. Jones, and J. R. Sizelove, Appl. Phys. Lett. 75, 811 (1999).
    [6] A. Y. Polyakov et al., J. Appl. Phys. 94, 2895 (2003).
    [7] S. O. Kucheyev, J. S. Williams, C. Jagadish, J. Zou, C. Evans, A. J. Nelson, and A. V. Hamza, Phys. Rev. B, 67, 094115 (2003).
    [8] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).
    [9] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).
    [10] Ohtomo, M. Kawasaki, Y. Sakurai, Y. Yoshida, H. Koinuma, P. Yu, Z. Tang, G. Wong, and Y. Segawa, Mater. Sci. Eng. B, 54, 24 (1998).
    [11] C. J. Pan, C. W. Tu, J. J. Song, G. Cantwell, C. C. Lee, B. J. Pong, and G. C. Chi, Proc. SPIE 5722, 410 (2005).
    [12] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Jpn. J. Appl. Phys., Part 2 36, L1453 (1997).
    [13] K. Ogata, T. Kawanishi, K. Maejima, K. Sakurai, Sz. Fujita, and Sg.Fujita, Jpn. J. Appl. Phys., Part 2 40, L657 (2001).
    [14] S. F. Chichibu, T. Yoshida, T. Onuma, and H. Nakanishi, J. Appl. Phys. 91, 874 (2002).
    [15] K.M. lin, P. Tsai, Thin Solid Films, 515, 8601–8604 (2007).
    [16] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, J. Vac. Sci. Technol. B, 22, 932 (2004).
    [17] H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).
    [18] K. Baedeker, Ann. Phys. (Leipzig), 22, 749 (1907).
    [19] G. Haacke, Ann. Rev. Mater. Sci. 7, 73 (1977).
    [20] M. Hiramatsu, K. Imaeda, N. Horio, and M.Nawata, J. Vac. Sci. Technol., A 16, 669 (1998).
    [21] B.G. Lewis and D. C. Paine, Materials Research Society Bulletin, 25, pp. 22-27(August 2000).
    [22] G.J. Exarhos and X.D. Zhou, Thin Solid Films, 515, 7025 (2007).
    [23] E. Fortunato, D. Ginley, H. Hosono, and D.C. Paine, MRS BULLETIN, 32, pp. 242-247 (March 2007).
    [24] H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, “Semiconductor Transparent Thin Films”, Institute of Physics Publishing (1995).
    [25] J. S. Lee, M. S. Islam, S. Kim, Sens. Actuators B 126, 73-77 (2007)
    [26] J. J. Chen, M. H. Yu, W. L. Zhou, Appl. Phys. Lett. 87, 173119 (2005)
    [27] H. Hu, X. Huang, C. Deng, X. Chen, Y. Qian, Mater. Chem. Phys. 106, 59-62 (2007)
    [28] S. W. Xue, X. T. Zu, W. L. Zhou, H. X. Deng, X. Xiang, L. Zhang, H. Deng, J. Alloy. Compound. 448, 21-26 (2008)
    [29] K. R. Murali, J. Phys. Chem. Solid. 68, 2293-2296 (2007)
    [30] P. Sandvik, K. Mi, F. Shahedipour, R. McClintock, A. Yasan, P. Kung, M. Razeghi, J. Cryst. Growth, 231, 366–370 (2001).
    [31] C. Varenne, L. Maezt, J. Brunet, K. Wierzbowska, A. Pauly, B. Lauron, Thin Solid Films, 516, 2237–2243 (2008).
    [32] P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, Dalton Trans., 19, 2995 (2004).
    [33] H. Mizoguchi and P.M. Woodward, Chem. Mater., 16, 5233 (2004).
    [34] D.C. Look, B. Claflin, in: G.J. Brown, M.O. Manasreh, C. Gmachl, R.M. Biefeld, K. Unterrainer (Eds.), Progress in Compound Semiconductor Materials IV-Electronic and Optoelectronic Applications, Boston , U.S.A., 2004, Materials Research Society Symposium Proceedings, vol. 829, p. B8.6.1 (2005).
    [35] C.G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000).
    [36] C. Kiliç and A. Zunger, Phys. Rev. Lett., 88, 095501-1 (2002).
    [37] B. Thangaraju, Thin Solid Films, 402, 71 (2002).
    [38] K. Ellmer, J. Phys., D, Appl. Phys., 33, R17 (2000).
    [39] K. Ellmer, J. Phys., D, Appl. Phys., 34, 3097 (2001).
    [40] G. Frank, H. Köstlin, Appl. Phys., A 27, 197 (1982).
    [41] G. Masetti, M. Severi, S. Solmi, IEEE Trans. Electron Devices, ED30, 764 (1983).
    [42] D. Chattopadhyay, H.J. Queisser, Rev. Mod. Phys., 53, 745 (1981).
    [43] P. Ebert, Z. Zhang, F. Kluge, M. Simon, Z. Zhang, K. Urban, Phys. Rev. Lett., 83, 757 (1999).
    [44] T. Pisarkiewicz, K. Zakrzewska, E. Leja, Thin Solid Films, 174, 217 (1989).
    [45] Jorge I. Cisneros, Applied Optics, 37, 5262 (1998).
    84
    [46] J.I. Cisneros, Applied Optics, 37, 5262 (1998).
    [47] http://en.wikipedia.org/wiki/Energy-dispersive_X ray_spectroscopy
    [48] K.J. Chen, T.H. Fang, F.Y. Hung, L.W. Ji, S.J. Chang, S.J. Young, Y.J. Hsiao, Appl. Surf. Sci. 254, 5791–5795 (2008).
    [49] S.B. Majumder, M. Jain, P.S. Dobal, R.S. Katiyar, Mater. Sci. Eng. B 103, 16–25 (2003).
    [50] Q. Yu, H. Yang,W. Fu, L. Chang, J. Xu, C. Yu, R.Wei, K.D. Hongyang, M. Li, G. Zou, Thin Solid Films 515,3840–3843 (2007).
    [51] P.T. Hsieh, Y.C. Chen, K.S. Kao, M.S. Lee, C.C. Cheng, J. Eur. Ceram. Soc. 27, 3815–3818 (2007).
    [52] B.D. Cullity, The Elements of X-Ray Diffraction, Addison–Wesley, Reading, MA, p. 102 (1978).
    [53] J.H. Lee, K.H. Ko, B.O. Park, J. Cryst. Growth 247, 119–125(2003).
    [54] H.M. Zhou, D.Q. Yi, Z.M. Yu, L.R. Xiao, J. Li, Thin Solid Films, 55, 6909– 6914 (2007).
    [55] W. D. Yu, X. M. Li, X. D. Gao, Appl. Phys. Lett. 84, 2685-2660 (2004).
    [56] B Lin, Z Fu, Y Jia, Appl. Phys. Lett. 79, 943 (2001).
    [57] J. Als-Nielsen, D. McMorrow, Elements of Modern X-ray Physics, John Wiley & Sons, Ltd. (2001).
    [58] K.J. Chen, F.Y. Hung, S.J. Chang, J. Nanosci. Nanotechnol. 8, 1–5 (2008).
    [59] Y.R. Park, E.K. Kim, D. Jung, T.S. Park, Y.S. Kim, Appl. Surf. Sci. 254, 2250– 2254 (2008).
    [60] K. Yoshino, S. Oyama, M. Kato, M. Oshima, M. Yoneta, T. Ikari, J. Phys.: Conf. Ser. 100, 082019 (2008).
    [61] W.D. Yu, X.M. Li, X.D. Gao, Appl. Phys. Lett. 84, 2685-2660 (2004).
    [62] H.S. Kang, J.S. Kang, S.S. Pang, E.S. Shim, S.Y. Lee, Mater. Sci. Eng. B, 102, 313– 316 (2003).
    [63] X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Appl. Phys. Lett. 78, 2285–2287 (2001).
    [64] M. Razeghi and A. Rogalski, J ,Appl, Phys. Vol. 79, pp.7473- 7044, (1996).
    [65] C.H.Chen, S.J. Chang , Y.K.Su, G.C.Chi, J.Y.Chi, C.A.Chang, J.K. Sheu and J.F.Chen, IEEE photon. Technol. Lett. Vol.13, pp. 848-850 (2001).
    [66] D.V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska and M.A. Khan, J. Appl. Phys., vol. 83,pp 2142-2146 (1998).
    [67] S.J. Chang, T.K. Lin, Y.K. Su, Y.Z. Chiou, C.K. Wang, S.P. Chang, C.M. Chang, J.J. Tang and B.R. Huang, Material Science and Engineering B.,vol.127, pp. 164-168 (2006).
    [68] T.M. Barnes, J. Leaf, S. Hand, C. Fry and C. A. Wolden, J. Appl. Phys., vol 96, pp. 7036 – 7044 (2004).
    [69] H. Kato, M. Sano, K.Miyanoto and T. Yaom Jpn .J. Appl. Phys., vol.42, pp L1002 – L1005 (2003).
    [70] Y.I. Alivov, E.V. Kalinina, A.E. Cherenkov, D.C. Look, B.M. Ataev, A.K. Omaev, M.V. Chukichev and D.M. Bagnall, Appl. Phys. Lett., vol.83, pp.4719-4721 (2003).
    [71] S.J. Young, L.W.Ji, S.J,Chang and Y.K. Su, J. Crystal Growth, vol. 293, pp. 43-47 (2006).
    [72] A. Mang, K. Reimann and St. Rubenacke, Solid State Commun, 86 vol.94, pp.251-254 (1995).
    [73] A. Setiawan, Z. Vashaei, M. W. Cho, T. Yao, H. Kato, M. Sano, K. Miyamoto, I. Yonenaga and H. J. Ko, J. Appl. Phys., vol. 96, pp. 3763-3768 (2004).
    [74] E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth and M. Grundmann, Appl. Physi. Lett., vol. 82, pp. 3901-3903 (2003).
    [75] D. C. Reynolds, D. C. Look, B. Jogai, H. Morkoc, Solid State Commun., vol. 101, pp. 643-646 (1997).
    [76] H. J. Ko, Y. F. Chen, S. K. Hong and T. Yao, J. Crystal Growth, vol. 209, pp. 816-821 (2000).
    [77] R.K. Watts, in J.L. Vossen and W. Kern, eds., Thin Flim Processes, Academic, New York, pp. 131-174 (1978).
    [78] F.A. Padovani and R. Stratton, Solid-State Electron, Vol. 9, 695 (1966).
    [79] C.R. Crowell and V.L. Rideout, Solid-State Electron, Vol. 12, 89 (1969).
    [80] V.L. Rideout, Solid-State Electron, Vol. 18, 541 (1975).
    [81] M. Marso, M. Horstmann, M. Hardtdegen, P. Kordos, and H. Luth, Solid-State Electron, Vol. 41, 25 (1997).
    [82] P. Bhattacharya, Semiconductor optoelectronic devices, 2nd ed., Prentice Hall, New Jersey, (1997).
    [83] Sawyer B. Fuller, Eric J. Wilhelm, and Joseph M. Jacobson , JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL.
    11, NO. 1, (2002)

    下載圖示 校內:2010-07-03公開
    校外:2012-07-03公開
    QR CODE