| 研究生: |
潘正邦 Pan, Zheng-Bang |
|---|---|
| 論文名稱: |
以菱殼炭合成高比表面積之多重孔洞碳材應用於超級電容、電容脫鹽與氧氣還原反應 Synthesis of Multiporous Carbons Using Water-Chestnut-Shell Biochar for Applications in Supercapacitors, Capacitive Deionization and Oxygen Reduction Reaction |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 多孔碳材 、超級電容 、電容脫鹽 、氧氣還原反應 、綠色化學 |
| 外文關鍵詞: | Multiporous carbons, Supercapacitors, Capacitive deionization, Oxygen reduction reaction, Green chemistry |
| 相關次數: | 點閱:134 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出以綠色製程,且兼具回收循環機制的低成本方式,合成同時具有微孔與中孔性質之多重孔洞碳材,並探討其豐富孔洞性應用於超級電容、電容脫鹽與氧氣還原反應的性能表現。以廢棄農業資材-菱殼炭作為碳源,透過簡易物理混合法將其與 nano-CaCO3 模板及活化劑均勻混合,再以 950°C 高溫裂解,即可得到高比表面積多孔碳材。合成中不需使用有機溶劑,奈米碳酸鈣模板可以藉由鹽酸簡單移除,而所產生的鈣離子酸廢液可透過酸鹼中和回收機制,再製成模板使用,達到綠色製程的概念。
所製備的多重孔洞碳材,藉由調控不同 nano-CaCO3 模板與活化劑含量,能得到不同孔洞性質的碳材,其比表面積可高達 677-1684 m2/g。應用於超級電容上,多重孔洞碳材能在 1.0 M LiClO4/PC 有機電解液環境中,達到 132 F/g 之比電容值(掃描速率為 5 mV/s),即使在 500 mV/s 的高掃描速率條件下,電容保留率也可高達約70 %。此外,氮摻雜多重孔洞碳材所表現的偽電容效應,進一步使比電容值提高到至 160 F/g。在電容脫鹽方面,多重孔洞碳材於 CDI 系統中,表現出 9.09 mg/g的鹽吸附量,而在 MCDI 系統中,所添加的離子交換膜能減少共離子排斥效應以及法拉第反應所帶來的影響,使鹽吸附量提升至15.30 mg/g。最後,氮摻雜多重孔洞碳材於氧氣還原反應上,具有優異的催化效能,並表現出高穩定性和良好的抗甲醇穿透性。而實際應用於鋁空氣電池中時,氮摻雜多重孔洞碳材也表現出極佳的放電效率,能驅動風扇馬達轉動超過 4 小時。整體而言,本研究以菱殼炭所合成的多重孔洞碳材不僅符合經濟效益,並且具有廣泛的應用前景。
Porous carbons are used for multifarious applications nowadays (including electric storage devices, catalysis, water treatment, and so on) due to their many favorable properties, such as good conductivity, high permeability, high surface area, and an abundance of active sites. In this study, water-chestnut-shell biochar (WCSB) was used as the carbon source to synthesize multiporous carbons (MPCs) via a simple and eco-friendly physical blending method. In particular, the WCSB was mixed directly with nano-CaCO3 template and K2CO3 activating agent, and was then pyrolyzed at 950°C. Finally, MPCs were obtained by washing the product with HCl(aq). The experimental results showed that the MPCs had a high surface area of ~1600 m2 g-1 and a high specific capacitance of up to 132 F g-1 with a good retention rate (~70 %) even at 500 mV s-1 in LiClO4/PC electrolyte. Furthermore, N-doping of the MPCs increased the specific capacitance to 160 F g-1. The electrosorption capacity of the MPCs in a CDI system was found to be 9.09 mg g-1, while in a MCDI system, the adsorption capacity increased to 15.30 mg g-1. The N-doped MPCs demonstrated an excellent catalytic performance for oxygen reduction reaction in alkaline solution, with a high stability and good resistance to methanol crossover. The N-doped MPCs also showed an outstanding discharge efficiency when used in an Al-air battery. Overall, the results confirm that the WCSB synthesized in the present study has good potential as a green and sustainable carbon source for a wide variety of applications in a diverse range of fields.
1.Poonam; Sharma, K.; Arora, A.; Tripathi, S. K., Review of supercapacitors: Materials and devices. Journal of Energy Storage 2019, 21, 801-825.
2.Rouquerol, J.; Avnir, D.; Fairbridge, C. W.; Everett, D. H.; Haynes, J. M.; Pernicone, N.; Ramsay, J. D. F.; Sing, K. S. W.; Unger, K. K., Recommendations for the characterization of porous solids. Pure and Applied Chemistry 1994, 66 (8), 1739-1758.
3.Ji, T.; Chen, L.; Mu, L.; Yuan, R.; Knoblauch, M.; Bao, F. S.; Shi, Y.; Wang, H.; Zhu, J., Green processing of plant biomass into mesoporous carbon as catalyst support. Chemical Engineering Journal 2016, 295, 301-308.
4.An, K. H.; Kim, W. S.; Park, Y. S.; Choi, Y. C.; Lee, S. M.; Chun, D. C.; Bae, D. J.; Lim, S. C.; Lee, Y. H., Supercapacitors Using Single-Walled Carbon Nanotube Electrodes. Advanced Materials 2001, 13 (7), 497-500.
5.Liu, H.-J.; Wang, X.-M.; Cui, W.-J.; Dou, Y.-Q.; Zhao, D.-Y.; Xia, Y.-Y., Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. Journal of Materials Chemistry 2010, 20, 4223-4230.
6.Mohan, V. B.; Lau, K.-t.; Hui, D.; Bhattacharyya, D., Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering 2018, 142, 200-220.
7.Gao, S.; Li, X.; Li, L.; Wei, X., A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation. Nano Energy 2017, 33, 334-342.
8.Yang, L.; Shui, J.; Du, L.; Shao, Y.; Liu, J.; Dai, L.; Hu, Z., Carbon-Based Metal-Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future. Advanced Materials 2019, 31 (13), e1804799.
9.Chen, Z.; Zhuo, H.; Hu, Y.; Zhong, L.; Peng, X.; Jing, S.; Liu, Q.; Zhang, X.; Liu, C.; Sun, R., Self-Biotemplate Preparation of Hierarchical Porous Carbon with Rational Mesopore Ratio and High Oxygen Content for an Ultrahigh Energy-Density Supercapacitor. ACS Sustainable Chemistry & Engineering 2018, 6 (5), 7138-7150.
10.Chen, D.; Yang, L.; Li, J.; Wu, Q., Effect of Self‐Doped Heteroatoms in Biomass‐Derived Activated Carbon for Supercapacitor Applications. ChemistrySelect 2019, 4 (5), 1586-1595.
11.Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of Highly Ordered Carbon Molecular Sieves via Template Mediated Structural Transformation. Journal of Physical Chemistry B 1999, 103 (37), 7743-7746.
12.Han, S.; Hyeon, T., Simple silica-particle template synthesis of mesoporous carbons. Chemical Communications 1999, 1955-1956.
13.Salazar, A. F. S.; Ayral, A.; Chave, T.; Hulea, V.; Nikitenko, S. I.; Abate, S.; Perathoner, S.; Lacroix-Desmazes, P., Unconventional Pathways for Designing Silica-Supported Pt and Pd Catalysts With Hierarchical Porosity. Studies in surface science and catalysis 2019, 178, 377-397.
14.Tanaka, S.; Nishiyama, N.; Egashira, Y.; Ueyama, K., Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite. Chem Commun (Camb) 2005, (16), 2125-7.
15.Jiao, J.; Xiang, Y.; Cao, J.; Xia, Y., Worm-hole structured mesoporous carbon monoliths synthesized with amphiphilic triblock copolymer. Journal of Porous Materials 2016, 23 (6), 1431-1438.
16.Conway, B. E., Transition from Supercapacitor to Battery Behavior in Electrochemical Energy Storage. Journal of The Electrochemical Society 1991, 138, 1539-1548.
17.Sudhakar, R., Mesoporous Materials for High- Performance Electrochemical Supercapacitors. IntechOpen 2019, 1-14.
18.Lahyani, A.; Venet, P.; Guermazi, A.; Troudi, A., Battery/Supercapacitors Combination in Uninterruptible Power Supply (UPS). IEEE Transactions on Power Electronics 2013, 28 (4), 1509-1522.
19.Herrera, V. I.; Gaztanaga, H.; Milo, A.; Saez-de-Ibarra, A.; Etxeberria-Otadui, I.; Nieva, T., Optimal Energy Management and Sizing of a Battery--Supercapacitor-Based Light Rail Vehicle With a Multiobjective Approach. IEEE Transactions on Industry Applications 2016, 52 (4), 3367-3377.
20.Mir, L.; Etxeberria-Otadui, I.; Arenaza, I. P. d.; Sarasola, I.; Nieva, T., A supercapacitor based light rail vehicle: system design and operations modes. IEEE Energy Conversion Congress and Exposition 2009, 1632-1639.
21.González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R., Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews 2016, 58, 1189-1206.
22.Endo, M.; Takeda, T.; Kim, Y. J.; Koshiba, K.; Ish, K., High Power Electric Double Layer Capacitor (EDLC’s); from Operating Principle to Pore Size Control in Advanced Activated Carbons. Carbon Science 2001, 1 (3), 117-128.
23.Miller, J. E., Review of Water Resources and Desalination Technologies. Sandia National Laboratories Report 2003.
24.Lee, K. P.; Arnot, T. C.; Mattia, D., A review of reverse osmosis membrane materials for desalination—Development to date and future potential. Journal of Membrane Science 2011, 370 (1-2), 1-22.
25.Amor, Z.; Bariou, B.; Mameri, N.; Taky, M.; Nicolas, S.; Elmidaoui, A., Fluoride removal from brackish water by electrodialysis. Desalination 2001, 133 (3), 215-223.
26.Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P. M., Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science 2013, 58 (8), 1388-1442.
27.Tang, W.; Liang, J.; He, D.; Gong, J.; Tang, L.; Liu, Z.; Wang, D.; Zeng, G., Various cell architectures of capacitive deionization: Recent advances and future trends. Water Res 2019, 150, 225-251.
28.Kang, J.; Kim, T.; Shin, H.; Lee, J.; Ha, J.-I.; Yoon, J., Direct energy recovery system for membrane capacitive deionization. Desalination 2016, 398, 144-150.
29.Wang, X.; Li, Z.; Qu, Y.; Yuan, T.; Wang, W.; Wu, Y.; Li, Y., Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design. Chem 2019, 5 (6), 1486-1511.
30.Li, W.; Zhou, W.; Li, H.; Zhou, Z.; Zhou, B.; Sun, G.; Xin, Q., Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell. Electrochimica Acta 2004, 49 (7), 1045-1055.
31.Wang, H.-F.; Xu, Q., Materials Design for Rechargeable Metal-Air Batteries. Matter 2019, 1 (3), 565-595.
32.Ma, R.; Lin, G.; Zhou, Y.; Liu, Q.; Zhang, T.; Shan, G.; Yang, M.; Wang, J., A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. npj Computational Materials 2019, 5 (1).
33.Singh, S. K.; Takeyasu, K.; Nakamura, J., Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen-Doped Carbon Materials. Advanced Materials 2019, 31 (13), e1804297.
34.Yang, L.; Jiang, S.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X.; Wu, Q.; Ma, J.; Ma, Y.; Hu, Z., Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed Engl 2011, 50 (31), 7132-5.
35.Lu, Z.; Li, S.; Liu, C.; He, C.; Yang, X.; Ma, D.; Xu, G.; Yang, Z., Sulfur doped graphene as a promising metal-free electrocatalyst for oxygen reduction reaction: a DFT-D study. RSC Advances 2017, 7 (33), 20398-20405.
36.Cheng, F.; Chen, J., Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews 2012, 41 (6), 2172-92.
37.Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, X. B., Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chemical Society Reviews 2014, 43 (22), 7746-86.
38.Wang, T.; Kaempgen, M.; Nopphawan, P.; Wee, G.; Mhaisalkar, S.; Srinivasan, M., Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc–air batteries. Journal of Power Sources 2010, 195 (13), 4350-4355.
39.Han, X.; Li, X.; White, J.; Zhong, C.; Deng, Y.; Hu, W.; Ma, T., Metal-Air Batteries: From Static to Flow System. Advanced Energy Materials 2018, 8 (27).
40.Zhang, J.; Zhou, Q.; Tang, Y.; Zhang, L.; Li, Y., Zinc-air batteries: are they ready for prime time? Chemical Science 2019, 10 (39), 8924-8929.
41.Zhong, Y.; Xu, X.; Wang, W.; Shao, Z., Recent Advances in Metal‐Organic Framework Derivatives as Oxygen Catalysts for Zinc‐Air Batteries. Batteries & Supercaps 2018, 2 (4), 272-289.
42.Qu, D.; Shi, H., Studies of activated carbons used in double-layer capacitors. Journal of Power Sources 1998, 74, 99-107.
43.Jüttner, K., Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces. Electrochimica Acta 1990, 35 (10), 1501-1508.
44.Mei, B.-A.; Munteshari, O.; Lau, J.; Dunn, B.; Pilon, L., Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. The Journal of Physical Chemistry C 2017, 122 (1), 194-206.
45.Donohue, M. D.; Aranovich, G. L., Classification of Gibbs adsorption isotherms. Advances in Colloid and Interface Science 1998, 76, 137-152.
46.Chang, S. S.; Clair, B.; Ruelle, J.; Beauchene, J.; Di Renzo, F.; Quignard, F.; Zhao, G. J.; Yamamoto, H.; Gril, J., Mesoporosity as a new parameter for understanding tension stress generation in trees. Journal of Experimental Botany 2009, 60 (11), 3023-30.
47.Majid, N., Surface Area: Brunauer–Emmett–Teller (BET). In Progress in Filtration and Separation, 2015; pp 585-608.
48.Inkson, B. J., Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods, 2016; pp 17-43.
49.Przepiórski, J.; Skrodzewicz, M.; Morawski, A. W., High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Applied Surface Science 2004, 225 (1-4), 235-242.
50.Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H., Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Advanced Materials 2012, 24 (15), 2047-50.
51.Inagaki, M.; Toyoda, M.; Soneda, Y.; Tsujimura, S.; Morishita, T., Templated mesoporous carbons: Synthesis and applications. Carbon 2016, 107, 448-473.
52.Liu, G. W.; Chen, T. Y.; Chung, C. H.; Lin, H. P.; Hsu, C. H., Hierarchical Micro/Mesoporous Carbons Synthesized with a ZnO Template and Petroleum Pitch via a Solvent-Free Process for a High-Performance Supercapacitor. ACS Omega 2017, 2 (5), 2106-2113.
53.Lehman, R. L.; Gentry, J. S.; Glumac, N. G., Thermal stability of potassium carbonate near its melting point. Thermochimica Acta 1998, 316, 1-9.
54.Cao, J.; Zhu, C.; Aoki, Y.; Habazaki, H., Starch-Derived Hierarchical Porous Carbon with Controlled Porosity for High Performance Supercapacitors. ACS Sustainable Chemistry & Engineering 2018, 6 (6), 7292-7303.
55.Li, Z.; Li, D.; Liu, Z.; Li, B.; Ge, C.; Fang, Y., Mesoporous carbon microspheres with high capacitive performances for supercapacitors. Electrochimica Acta 2015, 158, 237-245.
56.Cordeiro, C. M.; Hincke, M. T., Recent patents on eggshell: shell and membrane applications. Recent Pat Food Nutr Agric 2011, 3 (1), 1-8.
57.Li, M.; Xue, J., Integrated Synthesis of Nitrogen-Doped Mesoporous Carbon from Melamine Resins with Superior Performance in Supercapacitors. The Journal of Physical Chemistry C 2014, 118 (5), 2507-2517.
58.Rybarczyk, M. K.; Lieder, M.; Jablonska, M., N-doped mesoporous carbon nanosheets obtained by pyrolysis of a chitosan–melamine mixture for the oxygen reduction reaction in alkaline media. RSC Advances 2015, 5 (56), 44969-44977.
59.Liu, Z.; Du, Z.; Song, H.; Wang, C.; Subhan, F.; Xing, W.; Yan, Z., The fabrication of porous N-doped carbon from widely available urea formaldehyde resin for carbon dioxide adsorption. J Colloid Interface Sci 2014, 416, 124-32.
60.He, X.; Sun, H.; Zhu, M.; Yaseen, M.; Liao, D.; Cui, X.; Guan, H.; Tong, Z.; Zhao, Z., N-Doped porous graphitic carbon with multi-flaky shell hollow structure prepared using a green and 'useful' template of CaCO3 for VOC fast adsorption and small peptide enrichment. Chem Commun (Camb) 2017, 53 (24), 3442-3445.
61.Thangavel, R.; Kannan, A. G.; Ponraj, R.; Thangavel, V.; Kim, D.-W.; Lee, Y.-S., Nitrogen- and sulfur-enriched porous carbon from waste watermelon seeds for high-energy, high-temperature green ultracapacitors. Journal of Materials Chemistry A 2018, 6 (36), 17751-17762.
62.Hulicova-Jurcakova, D.; Seredych, M.; Lu, G. Q.; Bandosz, T. J., Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors. Advanced Functional Materials 2009, 19 (3), 438-447.
63.Bzura, J.; Abtahi, F.; Stratton, L., Superconducting generators: Economics, technical considerations and ancillary technology. IEEE Transactions on Magnetics 1981, 17 (1), 880-883.
64.Mensah-Darkwa, K.; Zequine, C.; Kahol, P.; Gupta, R., Supercapacitor Energy Storage Device Using Biowastes: A Sustainable Approach to Green Energy. Sustainability 2019, 11 (2).
65.You, B.; Wang, L.; Yao, L.; Yang, J., Three dimensional N-doped graphene-CNT networks for supercapacitor. Chem Commun (Camb) 2013, 49 (44), 5016-8.
66.Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y., Supercapacitor Devices Based on Graphene Materials. Journal of Physical Chemistry C 2009, 113, 13103-13107.
67.Xia, H.; Wang, Y.; Lin, J.; Lu, L., Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors. Nanoscale Research Letters 2012, 7.
68.Barbieri, O.; Hahn, M.; Herzog, A.; Kötz, R., Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 2005, 43 (6), 1303-1310.
69.Gao, F.; Qu, J.; Zhao, Z.; Wang, Z.; Qiu, J., Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors. Electrochimica Acta 2016, 190, 1134-1141.
70.Huang, Z. H.; Liu, T. Y.; Song, Y.; Li, Y.; Liu, X. X., Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon. Nanoscale 2017, 9 (35), 13119-13127.
71.Jung, N.; Kwon, S.; Lee, D.; Yoon, D. M.; Park, Y. M.; Benayad, A.; Choi, J. Y.; Park, J. S., Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors. Advanced Materials 2013, 25 (47), 6854-8.
72.Yu, X.; Ruan, D.; Wu, C.; Wang, J.; Shi, Z., Spiro-(1,1')-bipyrrolidinium tetrafluoroborate salt as high voltage electrolyte for electric double layer capacitors. Journal of Power Sources 2014, 265, 309-316.
73.Qian, W.; Sun, F.; Xu, Y.; Qiu, L.; Liu, C.; Wang, S.; Yan, F., Human hair-derived carbon flakes for electrochemical supercapacitors. Energy & Environmental Science 2014, 7 (1), 379-386.
74.Li, H.-Q.; Liu, R.-L.; Zhao, D.-Y.; Xia, Y.-Y., Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly. Carbon 2007, 45 (13), 2628-2635.
75.Chen, Z.; Wen, J.; Yan, C.; Rice, L.; Sohn, H.; Shen, M.; Cai, M.; Dunn, B.; Lu, Y., High-Performance Supercapacitors Based on Hierarchically Porous Graphite Particles. Advanced Energy Materials 2011, 1 (4), 551-556.
76.Wang, X.; Li, Y.; Lou, F.; Melandsø Buan, M. E.; Sheridan, E.; Chen, D., Enhancing capacitance of supercapacitor with both organic electrolyte and ionic liquid electrolyte on a biomass-derived carbon. RSC Advances 2017, 7 (38), 23859-23865.
77.Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N., Nanostructured materials for water desalination. Nanotechnology 2011, 22 (29), 292001.
78.Ronen, A.; Walker, S. L.; Jassby, D., Electroconductive and electroresponsive membranes for water treatment. Reviews in Chemical Engineering 2016, 32 (5).
79.Cheng, Y.; Hao, Z.; Hao, C.; Deng, Y.; Li, X.; Li, K.; Zhao, Y., A review of modification of carbon electrode material in capacitive deionization. RSC Advances 2019, 9 (42), 24401-24419.
80.Huang, Z.-H.; Yang, Z.; Kang, F.; Inagaki, M., Carbon electrodes for capacitive deionization. Journal of Materials Chemistry A 2017, 5 (2), 470-496.
81.Li, H.; Zaviska, F.; Liang, S.; Li, J.; He, L.; Yang, H. Y., A high charge efficiency electrode by self-assembling sulphonated reduced graphene oxide onto carbon fibre: towards enhanced capacitive deionization. Journal of Materials Chemistry A 2014, 2 (10).
82.Wimalasiri, Y.; Zou, L., Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon 2013, 59, 464-471.
83.Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M., Ordered Mesoporous Carbons. Advanced Materials 2001, 13 (9), 677-681.
84. Li, Y.; Zhang, C.; Jiang, Y.; Wang, T.-J.; Wang, H., Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization. Desalination 2016, 399, 171-177.
85.Qu, Y.; Baumann, T. F.; Santiago, J. G.; Stadermann, M., Characterization of Resistances of a Capacitive Deionization System. Environmental Science & Technology 2015, 49 (16), 9699-706.
86.Jain, A.; Kim, J.; Owoseni, O. M.; Weathers, C.; Cana, D.; Zuo, K.; Walker, W. S.; Li, Q.; Verduzco, R., Aqueous-Processed, High-Capacity Electrodes for Membrane Capacitive Deionization. Environ Sci Technol 2018, 52 (10), 5859-5867.
87.Feng, C.; Chen, Y. A.; Yu, C. P.; Hou, C. H., Highly porous activated carbon with multi-channeled structure derived from loofa sponge as a capacitive electrode material for the deionization of brackish water. Chemosphere 2018, 208, 285-293.
88.Yu, J.; Jo, K.; Kim, T.; Lee, J.; Yoon, J., Temporal and spatial distribution of pH in flow-mode capacitive deionization and membrane capacitive deionization. Desalination 2018, 439, 188-195.
89.Tang, W.; He, D.; Zhang, C.; Kovalsky, P.; Waite, T. D., Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Research 2017, 120, 229-237.
90.Goubert-Renaudin, S. N. S.; Wieckowski, A., Ni and/or Co nanoparticles as catalysts for oxygen reduction reaction (ORR) at room temperature. Journal of Electroanalytical Chemistry 2011, 652 (1-2), 44-51.
91.Shui, J.; Wang, M.; Du, F.; Dai, L., N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Science Advances 2015, 1 (1), e1400129-e1400135.
92.Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. 2016, 351 (6271), 361-365.
93.Zhang, L.; Xia, Z., Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells. The Journal of Physical Chemistry C 2011, 115 (22), 11170-11176.
94.Wang, T.; Chen, Z.-X.; Chen, Y.-G.; Yang, L.-J.; Yang, X.-D.; Ye, J.-Y.; Xia, H.-P.; Zhou, Z.-Y.; Sun, S.-G., Identifying the Active Site of N-Doped Graphene for Oxygen Reduction by Selective Chemical Modification. ACS Energy Letters 2018, 3 (4), 986-991.
95.Ravikumar, M. K.; Shukla, A. K., Effect of Methanol Crossover in a Liquid‐Feed Polymer‐Electrolyte Direct Methanol Fuel Cell. Journal of The Electrochemical Society 1996, 143, 2601-2606.
96.Jung, N.; Cho, Y.-H.; Ahn, M.; Lim, J. W.; Kang, Y. S.; Chung, D. Y.; Kim, J.; Cho, Y.-H.; Sung, Y.-E., Methanol-tolerant cathode electrode structure composed of heterogeneous composites to overcome methanol crossover effects for direct methanol fuel cell. International Journal of Hydrogen Energy 2011, 36 (24), 15731-15738.