簡易檢索 / 詳目顯示

研究生: 林暐傑
Lin, Wei-Chien
論文名稱: 應用多目標粒子群法於船型初步設計之研究
Implementation of Particle Swarm Optimization Algorithm for Preliminary Ship Design
指導教授: 楊世安
Yang, Shih-An
黃正清
Huang, Cheng-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 182
中文關鍵詞: 粒子群演算法電腦輔助設計軟體多目標最佳化成本估算耐海性變複雜度方法
外文關鍵詞: MOPSO, Rhino, Multiobjective, Cost Estimization, Variable-Complexity Modeling
相關次數: 點閱:151下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 船舶設計之初,面對不同的需求,最佳化船舶性能一直是設計者所追求的目標,如同時兼顧最小阻力、最小建造成本、最大載運能力、最佳船體耐海性等等,目前仍仰賴設計人員的經驗,或是以大量的設計資料來當作設計的依據,在這樣的情況下,沒有理論基礎的協助最佳化設計的精確度並不高,並且耗費大量的人力資源與時間,為解決這樣的問題必須引入適用最佳化設計方法。
    全文主要以粒子群演算法並引入變複雜度方法,結合各類套裝軟體SHIPFOLW、ORCA3D以及電腦輔助設計軟體 RHINO 於船型最佳化設計問題,並針對船型基礎設計中主要尺度與線型最佳化,為該類問題提出整體運算架¬構。在此架構中運用粒子群演算法將船型改變量輸出交由電腦輔助設計軟體改變模型,其後再由各套裝軟體計算船舶性能和建造成本估算,並回饋回粒子群演算法以進行最佳化搜索,最後對於各最佳化適應函數以及各相關限制條件下計算設計者所需要之船型;在設計中又因為商用軟體所用模型精度與計算時間不一,而且搜尋過程中需要面對大量的計算,在本研究中加入變複雜度方法的概念,以高低精度的不同計算量互相補足,以得到降低計算時間與提高精度之目的,並且能夠有效率地解決最佳化設計問題。

    At the beginning of ship design, optimal ship design and optimization of ship performance are the goals to the designers for different requirements, such as the minimum resistance, the minimum cost, the maximum capacity, the optimum seakeeping. At the present, the optimization depends on the experience of the designers or a amount of design data. In this case, due to the lack of theoretical foundation, the optimal design is inaccurate, and it wastes a lot of human resources and time.
    To solve the above menfioned problem, the main purpose to this research is to use multiobjective particle optimization PSO (MOPSO) and variable complexity modeling to implement the optimization for preliminary design of ship. We develop a system which combins a number of commercial softwares, including SHIPFOLW ,ORCA3D ,and RHINO,to change hull form , calculate the performance and estimate the cost of the ship.We develop different three ways to change model with variables from dimensions to control points.We compare the deformation of the results in two, three and five objective functions in different model changing ways.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 符號 XII 第一章 緒論 1 1-1 研究背景與目的 1 1-2 文獻回顧 2 1-3 論文架構 5 第二章 粒子群最佳化演算法 7 2-1 最佳化演算法之概念與歷史演進 7 2-2 單目標演算法介紹與比較 8 2-2-1 模擬退火法(Simulated Annealing) 8 2-2-2 基因演算法 (Genetic Algorithm,GA) 9 2-2-3 粒子群演算法(Particle Swarm Optimization Algorithm,PSO) 10 2-2-4 最佳化演算法之討論 15 2-3 多目標最佳化演算法 16 2-3-1 多目標粒子群演算法(MOPSO Algorithm) 20 2-3-2 MOPSO-CD之概述 24 2-3-3 Crowding Distance與突變 27 第三章 船舶性能計算方法 31 3-1 繪圖軟體Rhino3D 31 3-2 船用計算軟體Orca3D與靜水性能計算 33 3-3 阻力計算概述 35 3-4 低精度阻力計算 Holtrop方法 37 3-5 高精度阻力計算 38 3-6 耐海性計算 43 第四章 自動化程式架構與資料傳遞 46 4-1 整體程式架構 46 4-2 多目標粒子群與自動化控制中心程式碼概述 50 4-3 自動化輔助程式—按鍵精靈 54 4-4 RHINO整合船體計算程式與自動化輔助程式腳本概述 55 第五章 船型改變方法與設計參數 60 5-1 船型主要尺寸改變方法 60 5-2 曲面微擾法 61 5-3 局部線型改變方法: 改變船艏長度方法 63 5-4 局部線型改變方法: 改變細部線型方法 65 第六章 建造成本估算 68 6-1 建造成本概述 68 6-2 成本估算方法 70 6-3 估算方法文獻回顧 71 6-4 成本估算研究方法與討論 74 第七章 變複雜度方法 76 7-1 概述與文獻回顧 76 7-2 變複雜度應用於船體單目標最佳化設計與討論 78 7-3 變複雜度應用於多目標最佳化設計 79 第八章 結合多目標粒子群演算法與變複雜度方法於船型最佳化初步設計 81 8-1 原始船型與文獻數據 81 8-2 應用多目標粒子群演算法於主要尺寸最佳化 83 8-2-1 雙目標最佳化—以載運經濟性與建造成本估算 86 8-2-2 三目標最佳化—以載運經濟性、建造成本與總表面積 88 8-2-3 三目標最佳化—載運經濟性與耐海性(Heave,Pitch) 90 8-2-4 五目標最佳化—載運經濟性、建造成本、總表面積與耐海性(Heave,Pitch) 92 8-2-5 綜合討論 94 8-3 局部線型最佳化 97 8-3-1 改變船艏長度方法之局部最佳化 97 8-3-2 改變細部線型之局部最佳化 102 8-3-3 綜合討論 105 8-4 應用多目標粒子群演算法與變複雜度方法於主要尺度最佳化設計問題 109 8-4-1 以載運經濟性與建造成本估算為例 109 8-4-2 綜合討論 112 第九章 結論與未來展望 113 9-1 結論 113 9-2 研究過程中所遭遇之困難與解決方法 115 9-3 未來展望 116 參考文獻 119 附錄一 多目標MOPSO程式範例 124 附錄二 按鍵精靈(VBS)腳本範例 146

    參考文獻
    1. 劉浩翔,"應用多目標粒子群演算法於船舶球形艏最佳化設計,成功大學造船暨船舶機電工程研究所,碩士論文(2012)
    2. Kennedy, J., Eberhart, R, “Particle Swarm Optimization.” IEEE, 1995
    3. Roshdy Georges S. Barsoum, “Interdisciplinary computational mechanics—some computational problems in naval ship design.” International Journal for Numerical Methods In Engineering, Vol. 47, April 2000
    4. Cheng-Huang, Cheng-Chia Chiang, and Shean-Kwang Chou, “An Inverse Geometry Design Problem in Optimizing Hull Surface.” Journal of Ship Research, Vol.42, No.2, June 1998, pp. 79-85
    5. Peri D., Michele Rossetti and Emilio F. Campana, “Design Optimization of Ship Hulls via CFD Techniques.” Journal of Ship Research, Vol. 45, No.2, June 2001, pp. 140-149
    6. Peri D. and Emilio F. Campana, “Multidisciplinary Design Optimization of a Naval Surface Combatant,” Journal of Ship Research, Vol. 47, No.1, March 2003, pp.1-12
    7. Emilio F. Campana, Daniel Peri, Yusuke Tahara, Frederick Stern, “Shape optimization in ship hydrodynamics using computational fluid dynamics.” Computational Methods Application Engineering, Vol.196, 2006
    8. Margarita Reyes-Sierra and Carlos A. Coello Coello, “Multi-Objective Particle Swarm Optimizers : A Survey of the State-of-the-Art, ”International Journal of Computational Intelligence Research, Vol.2, No.3, 2006, pp.287-308
    9. K. Deb, Amrit Pratap, Sameer Agarwal and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, Vol.6, No. 2, April 2002
    10. E. Zitler, M. Laumanns, L. Thiele, “SPEA2: Improving the strength Pareto evolutionary algorithms,” Technical Report TIK-103, Computer Engineering and Network Laboratory(TIK), May 2001
    11. J.D. Schaffer, “Some experiments in machine learning using vector evaluated genetic algorithm,” Ph. D. thesis, Vanderbilt University, Nashville, TN, 1984
    12. K.E. Parsopoulos and M. N. Vrahatis, “Particle Swarm Optimization Method in Multiobjective Problems,” Proceeding of the ACM 2002 Symposium on Applied Computing, pp. 603-607, 2002
    13. Hu, X., and Eberhart, R. C., “Adaptive Particle Swarm Optimization: Detection and Response to Dynamic System,” Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1666-1670, 2002
    14. K.E. Parsopoulos and M. N. Vrahatis, “Multiobjective Optimization Using Parallel Vector Evaluated Particle Swarm Optimization,” Proceedings of the IASTED International Conference on Artifical Intelligence and Application(AIA), ACTA Press, Vol.2, pp. 823-828, 2004
    15. Gies, D., Rahmat-Samii, Y., “Reconfigurable array design using parallel particle swarm optimization,” IEEE AP-S Symposium Digests, pp. 177-180, June 22-27, 2003
    16. Carlos A. Coello Coello, Gregorio Toscano Pulido, and Maximino Salazar Lechuga, “Handling Multiple Objectives With Particle Swarm Optimization,” IEEE Transactions on Evolutionary Computation, Vol.8, No.3, June 2004
    17. Xiaodong Li, “ A Non-dominated Sorting Particle Swarm Optimization for Multiobjective Optimization,” Genetic and Evolutionary Computation, GECCO 2003, Proceedings, Part I, Springer, Lecture Notes in Computer Science, Vol. 2723, 2003, pp.37-48
    18. • Holtrop, J., "A Statistical Re-Analysis of Resistance and Propulsion Data", International Shipbuilding Progress, Vol. 31, No. 363, November 1984.
    19. Holtrop, J. and Mennen, G.G.J., "An Approximate Power Prediction Method", International Shipbuilding Progress, Vol. 29, No. 335, July 1982.
    20. ITTC, Proceedings of the 15th ITTC, The Hague, The Netherlands, published by the Netherlands Ship Model Basin, Wageningen, 1978.
    21. Perfomance, Propulsion 1978 ITTC Performance Prediction Method, International Towing Tank Conference, ITTC, 1999
    22. http://wenku.baidu.com/view/b91474f9aef8941ea76e0517.html
    23. Laurent and John,Ship Design & Construction,Volume 1 Chapter 10
    24. Naval Architecture for Non-Naval Architects BY BENFORD, HARRY- See more at: http://books.ioba.org/books/58377665.html#sthash.1XBN5UNX.dpuf
    25. Laurent Deschamps and Charles Greenwell, Integrating Cost Estimating with Ship Design Process,
    26. Ahmad M.Rashwan , Estimation of Ship Production Man-hours,Alexandria Engineering Journal,Vol.1 44 (2005),NO.4
    27. Chia-Chan Chou and Pao-Long Chang, Modeling and Analysis of Labor Cost Estimation for Shipbuilding: The Case of China Shipbuilding Corporation, Journal of Ship Production, Vol. 17, No. 2, May 2001, pp. 92–96
    28. Jonathan M. Ross, A Practical Approach for Ship Construction Cost Estimating, Proteus Engineering, Anteon Corporation, U.S.A.
    29. http://wenku.baidu.com/view/1935af69af1ffc4ffe47ac15.html
    30. http://www.bls.gov/ppi/
    31. shipping market review 2012,Danmarks Skibskredit
    32. Burgee, Susan L. and Giunta, Anthony A. and Balabanov, Vladimir and Grossman, Bernard and Mason, William H. and Narducci, Robert and Haftka, Robert T. and Watson, Layne T. (1995) A Coarse Grained Parallel Variable-Complexity Multidisciplinary Optimization Paradigm. Technical Report ncstrl.vatech_cs//TR-95-20, Computer Science, Virginia Polytechnic Institute and State University.
    33. Alexandrov, Natalia M. ; Lewis, Robert Michael ; Gumbert, Clyde R. ; Green, Larry L. ; Newman, Perry A.Optimization With Variable-Fidelity Models Applied to Wing Design , 1999
    34. 劉祖源、馮百威、詹成勝所著船體形線多科學設計優化,國防工業出版社
    35. Passaro A. and Starita A.,”Particle Swarm Optimization for Multimodal Functions : A Clustering Approach,”Journal of Artificial Evolution and Application, Feb. 2008
    36. Laura and Mihai Oltean,”What Else is the Evolution of PSO Telling Us? ,” Journal of Artificial Evolutiona and Application, Nov. 2007
    37. Stefano Cagnoni, “Particle Swarms: The Second Decade,” Hindawi, 2008
    38. H.C. Raven, A. van der Ploeg, A.R. Starke, TOWARDS A CFD-BASED PREDICTION OF SHIP PERFORMANCE ---PROGRESS IN PREDICTING FULL-SCALE RESISTANCE AND SCALE EFFECTS
    39. Lam Thu Bui, “Multi-Objective Optimization in Computational Intelligence : Theory and Practice,” Springer, 2008

    40. 陸磐安,造船原理,國立編譯館,2005年一版三刷
    41. Renaud, J. E. ,Gabriele, G.A.,1991 Sequential Global Approximation in NonHierarchic System Decom position and Optimization.Advances in Design Automations 2:273-293
    42. Cramer, E. J., Dennis, J.R., Jr., Frank, P. D., Lewis, R. M., and Shubin, G. R. Problem Formulationfor Multidisciplinary Optimization SIAM J Optimization.
    43. Kroo,et al.1995.MDO for Large Scale Aerospace Design. In Proc. ICASE/Langley Workshop on Multidisciplinary Optimization Philadelphia :SIAM.
    44. Sobieszczanski-Sobieski,J.Optimization by decomposition a step from hierarchic to non-hierarchic systems. In Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis andOptimization Hampton VA.
    45. 謝富百,"不同吃水情形下船形最佳化”,成功大學造船暨船舶機電工程研究所,碩士論文(2013)
    46. Maritime Economics & Logistics (2008) 10, 310–321. doi:10.1057/mel.2008.8,A Simple Model for Estimating Newbuilding Costs,Robert F Mulligan1,Department of Accountancy, Finance, Information Systems & Economics, College of Business, Western Carolina University, Cullowhee, NC, USA

    下載圖示 校內:2018-08-09公開
    校外:2018-08-09公開
    QR CODE