簡易檢索 / 詳目顯示

研究生: 江翊弘
Chiang, Yi-Hung
論文名稱: 藉由超快雷射直寫於鎳碳混合膜之石墨烯微圖案
Graphene-based Micropatterns by Using Ultrafast Laser Direct Writing on Ni/C Film
指導教授: 陳顯禎
Chen, Shean-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 56
中文關鍵詞: 混合濺鍍鎳碳混合膜超快雷射直接描寫石墨烯微圖案拉曼光譜多光子吸收
外文關鍵詞: co-sputtering, Ni/C thin film, ultrafast laser direct writing, Raman spectrum, multiphoton absorption
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於石墨烯(graphene)具有獨特且優越的電、機械、熱與光學性質而成為極受歡迎的材料之一,而且其極佳導電、快速電子移動率、低阻抗及可調變電導率,可被製作成許多光電元件,如太陽能電池、光接收器、調變器或波導等。本論文先以混合濺鍍機成長適合比例與厚度的鎳碳混合膜,再以超快雷射加工系統藉由多光子吸收(multiphoton absorption),引發雷射聚焦點附近鎳碳混合膜的快速升溫與降溫方式來成長具有特殊微圖案之石墨烯薄膜。利用超快雷射瞬間在小區域內加熱的特性,主要是將催化金屬鎳瞬間加熱,同時碳原子可以輕易的溶入鎳薄膜中,由於超快雷射的加工方式是脈衝式加熱,因此加工區域在一連串脈衝結束後會很快的降回環境溫度,讓碳原子於冷卻的過程中析出並且自組裝為石墨烯。最後,利用氯化鐵蝕刻,只留下成長後的石墨烯圖案。比較此種方式與其他石墨烯成長法,因為雷射脈衝的均勻性使得成長的石墨烯品質較均勻,且不需要透過繁瑣的轉印過程,可將欲製作之石墨烯圖案以CAD軟體設計後,搭配超快雷射加工系統之雷射劑量控制模組直寫並成長於鎳碳混合膜基板上。初步推論在石墨烯成長過程下,石墨烯的成長品質與雷射加工方式(含調控脈衝時間與加工次數等)以及加工路徑有很大關聯,因此可藉由適當的加工路徑來達到任意圖案且具高品質的石墨烯微圖案之實現。最後藉由拉曼光譜量測加以驗證,在雷射加工描寫之路徑上所成長之石墨烯,擁有良好的均勻性。利用此方法,不但省去了昂貴的光罩製作費用與製程複雜度,可在未來將此技術應用於三維微電極、電漿子波導以及先進製程中的三維電路的描繪。

    Recently, graphene has attracted enormous attention because of its unique and outstanding electrical, mechanical, thermal, and optical properties. Owing to its high electrical conductivity, significant electron mobility, low electrical impedance, and tunable electric conductivity which will be the candidates for electronic and optoelectronic devices, such as optical receiver, light modulator, and optical waveguides. A femtosecond laser induced localized thermal annealing while simultaneously decomposed carbon atoms diffused into the catalyst, an Ni thin film. Due to the pulse laser characteristics, the cooling rate to the room temperature will go back in a quick. During cooling process, the C atom segregated and self-assembling to few layer graphene. Then, the remaining Ni/C thin film was removing by a wet chemical etching process. Comparing to other methods, we control the duration of the laser pulse, laser dosage and processing path. By controlling laser parameters, we got better quality and quantity of graphene. Furthermore, we grown graphene on different kinds of substrates without tedious transfer process and for arbitrary patterns/devices by using the CAD to design patterns and combining our lab-made LabVIEW program with high-resolution laser focal volume. In the result, we knew that the quality of graphene has a great relation to laser parameters and the fabricating path direction. The laser direct writing method not only achieved a technic for fabricating a wide range of advanced graphene-based devices, such as 3D microelectrode, graphene waveguide and 3D circuits but also reduced the complicated process during the conventional CVD.

    摘要 I Extended Abstract III 誌謝 VI 圖目錄 X 第一章 序論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究動機及目的 7 1-4 論文架構 8 第二章 混合濺鍍與超快雷射加工機制 9 2-1混合濺膜 9 2-1-1 鍍膜原理 9 2-1-2 射頻磁控濺鍍系統 13 2-1-3 鎳碳混合膜 17 2-2 多光子加工與超快雷射系統 19 2-2-1 多光子吸收效應 19 2-2-2 超快雷射之加工 20 2-2-3 超快雷射熱效應 21 2-2-4 超快雷射光路系統 25 第三章 超快雷射誘發成長之石墨烯微圖形 29 3-1 石墨烯材料合成方式 29 3-2 超快雷射誘發成長石墨烯於Ni/C薄膜 34 3-3 實驗結果與討論 39 第四章 結論與未來展望 50 參考文獻 53

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666-669 (2004).
    [2] A. Bonanni, A. H. Loo, and M. Pumera, “Graphene for impedimetric biosensing,” TrAC. 37, 12-21 (2012).
    [3] X. Li, Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir-Blodgett films,” Nature Nanotech. 3, 538-542 (2008).
    [4] C. Berger, Z. M. Song, T. B. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B 108, 19912-19916 (2004).
    [5] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312-1314 (2009).
    [6] O. Ekici1, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. B. Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D: Appl. Phys. 41, 185501 (2008).
    [7] W. Denk, J. H Stricker, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
    [8] Y. M. Lin, A. V. Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated circuit,” Science 332, 1294-1297 (2011).
    [9] M. Goepper-Mayer, “Ober elementaraktemit zwei quantensprungen,” Annalen der Physik 9, 273-294 (1931).
    [10] W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Physical Review Letters 7, 229-231 (1961).
    [11] A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291 (2011).
    [12] M. Pumera, “Graphene in biosensing,” Mater. Today 14, 308–315 (2011).
    [13] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
    [14] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. B. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442, 282–286 (2006).
    [15] A. T. T. Koh, Y. M. Foong, and D. H. Chua, “Cooling rate and energy dependence of pulsed laser fabricated graphene on nickel at reduced temperature,” Appl. Phys. Lett. 97, 114102 (2010).
    [16] Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H. B. Sun, and F. S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nanotoday 5, 15-20 (2010).
    [17] J. B. Park, W. Xiong, Z. Q. Xie, Y. Gao, M. Qian, M. Mitchell, M. M. Samani, Y. S. Zhou, L. Jiang, and Y. F. Lu, “Transparent interconnections formed by rapid single-step fabrication of graphene patterns,” Appl. Phys. Lett. 99, 053103 (2011).
    [18] H. Medina, C. C. Huang, H. C. Lin, Y. H. Huang, Y. Z. Chen, W. C. Yen, and Y.-L. Chueh, “Ultrafast graphene growth on insulators via metal- catalyzed crystallization by a laser irradiation process: from laser selection, thickness control to direct patterned graphene utilizing controlled layer segregation process,” Small 25, 3017-3027 (2015).
    [19] W. Xiong, Y. S. Zhou, W. J. Hou, L. J. Jiang, Y. Gao, L. S. Fan, L. Jiang, J. F. Silvain, and Y. F. Lu, “Direct writing of graphene patterns on insulating substrates under ambient conditions,” Sci. Rep. 4, 4892 (2014).
    [20] 田民波,薄膜技術與薄膜材料,第一版,五南圖書出版社(2012)。
    [21] 李正中,薄膜光學與鍍膜技術,第七版,藝軒圖書出版社(2012)。
    [22] D. L. Smith, Thin Film Deposition: Principles and Practice, McGraw-Hill (1995).
    [23] 黃崑財,嶄新表面電漿子感測元件,國立中央大學光電科學研究所碩士論文(2004)。
    [24] K. Sugioka and Y. Cheng, “Femtosecond laser processing for optofluidic fabrication,” Lab Chip 12, 3576–3589 (2012).
    [25] F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors 14, 19402-19440 (2014).
    [26] K. Koenig, “Multiphoton microscopy in life sciences,” J. Microscopy 200, 83-104 (2000).
    [27] M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications, Springer-Verlag (1996).
    [28] C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using rose Bengal,” J. Phys. Chem. B 103, 3737-3741 (1999).
    [29] J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers studies of reaction efficiencies and applications in sustained release,” Macromolecules 33, 1514-1523 (2000).
    [30] P. S. Binder, G. O. Waring III, P. N. Arrowsmith, and C. Wang, “Histopathology of traumatic corneal rupture after radial keratotomy,” Arch. Opthalmol. 106, 1584-1590 (1988).
    [31] G. Pan, B. Li, M. Heath, D. Horsell, M. L. Wears , L. A. Taan, and S. Awan, “Transfer-free growth of graphene on SiO2 insulator substrate from sputtered carbon and nickel films,” Carbon 65, 349-358 (2013).
    [32] S. N. Yannopoulos, A. Siokou, N. K. Nasikas, V. Dracopoulos, F. Ravani, and G. N. Papatheodorou, “CO2-laser-induced growth of epitaxial graphene on 6H-SiC(0001),” Adv. Funct. Mater. 22, 113-120 (2012).
    [33] X. Li, W. Cai, L. Colombo, and R. S. Ruoff, “Evolution of graphene growth on Ni and Cu by carbon isotope labeling,” Nano Lett. 9, 4268-4272 (2009).
    [34] P. S. Binder, G. O. Waring III, P. N. Arrowsmith, and C. Wang, “Stacked 3D RRAM array with graphene/CNT as edge electrodes,” Sci. Rep. 5, 13785 (2015).

    下載圖示 校內:2021-07-18公開
    校外:2021-07-18公開
    QR CODE