簡易檢索 / 詳目顯示

研究生: 陳宛伶
Chen, Wan-Ling
論文名稱: AA7075 鋁合金板材溫成形製程下基於顯微組織整合之破壞準則與實驗驗證
A Microstructure-Integrated Fracture Criterion and Experimental Verification under Warm Forming Conditions of AA7075 Aluminium Alloy Sheets
指導教授: 李榮顯
Lee, Rong-Shean
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 114
語文別: 英文
論文頁數: 147
中文關鍵詞: AA7075 鋁合金溫成形製程析出物特徵破壞準則可成形性關聯
外文關鍵詞: AA7075 aluminium alloy, Warm forming processes, Precipitate characteristics, Fracture criterion, Formability correlation
ORCID: 0009-0001-9242-8383
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,多種結合多步驟時效與溫成形參數之 AA7075 鋁合金板材溫成形製程路徑被提出,以兼顧成形性、製程效率與近似 T6 之強度需求。然而,儘管不同製程可達成相近強度目標,其成形性仍因材料基地析出物特徵差異而存在顯著差異,相關成形機制尚未釐清。本論文針對此一問題,系統性探討不同溫成形製程路徑對 AA7075 變形行為與成形性的影響,並建立析出物特徵與宏觀成形性之定量關聯。
    為此,本論文探討三種 AA7075 鋁合金板材之溫成形製程路徑,分別為回歸再時效溫成形(RRAWF)、預時效溫成形(PAWF),以及本論文新提出之時效溫成形(AWF),並於各製程條件下進行成形試驗與微觀結構分析。針對 AWF 製程,首先透過溫成形極限高度試驗與烤漆後機械性質評估,系統性建立並驗證其製程可行性與適用參數。隨後,透過等溫中島試驗與單軸拉伸試驗,評估各製程路徑下 AA7075 板材之溫變形行為與成形性,並進行基地析出物之鑑定與定量分析。研究結果顯示,在本論文所探討之溫成形製程路徑範圍內,材料對變形的抵抗能力為主導 AA7075 板材變形行為與成形性的主要因素;同時,於各製程條件下形成之析出物皆屬可剪切型。基於此前提,進一步確認支配材料變形阻抗之關鍵基體顯微結構參數為析出物體積分率與平均半徑之乘積(fvRavg),可有效表徵不同溫成形製程路徑下之成形性差異。
    隨後,基於已建立的微觀結構特徵與宏觀成形性之間的定量相關性,將代表AA7075鋁合金板材溫成形性的fvRavg參數納入修正的Cockcroft & Latham破裂準則,修正並得到一「基於微觀組織特性整合之破壞能量準則」,利用此微觀結構整合準則,系統地計算了AA7075鋁合金板材在不同溫成形條件下的成形極限對應的斷裂能值,從而將微觀結構效應定量地傳遞到成形極限預測中。
    在與試驗結果比較並驗證所提出之破壞準則於各溫成形條件下對破裂成形極限曲線及其導入之有限元素模型具備良好預測準確性後,本論文進一步建立一套適用於溫成形條件下之 Lankford 係數快速評估方法。該方法透過設計具等效應變路徑之 Nakajima 試片,使其變形行為與單軸拉伸試驗一致,並於恆溫條件下進行驗證。由最終破裂試片之主、次應變所計算之 Lankford 係數,與傳統單軸拉伸試驗結果之差異低於 5%,有效克服高溫條件下 Lankford 係數不易量測之限制,並提供一項具工業應用潛力之材料各向異性快速評估方法。
    綜上所述,本論文建構一套整合顯微組織特徵、變形行為與成形性的研究架構,並透過系統化實驗、模型建立與數值模擬,將微觀組織效應定量導入成形性能評估,為溫成形製程設計與工程應用提供具體且可行之理論基礎與分析方法。此外,亦提出一項適用於 AA7075 鋁合金板材之時效溫成形(AWF)製程路徑,使其於高強度輕量化結構件之開發中,提供一項具可行性之替代成形路徑。

    In recent years, several warm-forming process routes combining multi-step ageing treatments with tailored forming parameters have been proposed for AA7075 aluminium alloy sheets to achieve a balance between formability, process efficiency, and near-T6 strength levels. However, although different process routes can deliver comparable post formed strength, their formability often differs significantly due to variations in matrix precipitate (MPts) characteristics, and the underlying deformation mechanisms remain insufficiently understood. To address this issue, this dissertation systematically investigates the influence of different warm-forming process routes on the deformation behaviour and formability of AA7075 sheets and establishes a quantitative correlation between precipitate characteristics and macroscopic formability.
    In pursuit of this objective, three distinct warm forming process routes are examined, namely retrogression–reageing warm forming (RRAWF), pre-aged warm forming (PAWF), and a newly developed ageing warm forming (AWF). Forming experiments and comprehensive microstructural characterisation were conducted under each condition. For the AWF route, its process feasibility and applicable parameter range were first established through warm limit dome height tests and post–paint-bake mechanical property evaluations. Subsequently, isothermal Nakajima and uniaxial tensile tests were employed to assess the warm deformation behaviour and formability of AA7075 sheets, accompanied by detailed identification and quantitative analysis of matrix precipitates. The results show that, within the investigated warm forming routes, deformation resistance is the primary factor governing the deformation behaviour and formability of AA7075 sheets, while the precipitates formed under all conditions remain shearable. Accordingly, the product of precipitate volume fraction and average precipitate radius (fvRavg) is identified as the key microstructural parameter controlling deformation resistance and effectively characterising formability differences among the process routes.
    Based on this established microstructure–formability correlation, the fvRavg parameter was incorporated into a modified Cockcroft–Latham fracture criterion, leading to the development of a microstructure-integrated fracture energy criterion. This criterion enables systematic determination of the fracture energy corresponding to forming limits under different warm forming conditions and provides a quantitative linkage between microstructural characteristics and macroscopic formability.
    After validating the proposed fracture criterion and the associated finite element framework against experimental fracture forming limit curves, a rapid evaluation method for the Lankford coefficient under warm-forming conditions was further developed using specially designed isothermal Nakajima tests with equivalent strain paths to uniaxial tension. The resulting R-values deviate by less than 5% from conventional uniaxial tensile measurements, providing a practical solution to the experimental challenges of anisotropy evaluation at elevated temperatures.
    Overall, this dissertation establishes an integrated framework linking microstructural characteristics, deformation behaviour, and formability of AA7075 aluminium alloy sheets. Through systematic experiments, model development, and numerical simulations, microstructural effects are quantitatively incorporated into forming performance evaluation, offering a physically informed basis for warm-forming process design. In addition, the proposed ageing warm forming (AWF) process route provides a feasible alternative processing pathway for high-strength lightweight structural components manufactured from AA7075 aluminium alloy.

    摘要 II Abstract III 致謝 V Acknowledgments VII Table of Contents VIII List of Figures XI List of Tables XVI List of Abbreviations XVIII Nomenclature XIX Chapter 1 Introduction 1 1.1 Research background 1 1.2 Hot and warm forming of aluminium alloy sheet 3 1.3 Warm forming of aluminium alloy sheet 7 1.4 Objectives and methodologies of the dissertation 14 1.5 Outline of the dissertation 17 Chapter 2 Theoretical Background 19 2.1 Introduction of AA7075 aluminium alloy sheets 19 2.1.1 Strengthening phases in AA7075 19 2.1.2 Strengthening mechanism of AA7075 24 2.1.2 Multi ageing treatment of AA7075 aluminium alloy 27 2.2 Warm Forming behaviour of AA7075 aluminium alloy sheets 32 2.3 Formability and forming limit diagram 35 2.4 Theoretical model for FLD prediction 37 2.4.1 Necking instability criteria 38 2.4.2 Energy-based criteria 39 2.5 Process simulation 40 2.6 Summary 41 Chapter 3 Experimental methods and setup 43 3.1 Material 43 3.2 Experimental temperature profile 43 3.3 Examination of microstructure characteristics 46 3.3.1 Electron Backscatter Diffraction Analysis 46 3.3.2 Differential Scanning Calorimetry 47 3.3.3 Transmission Electron Microscope 48 3.3.4 Small Angle X-ray Scattering 50 3.4 Uniaxial tensile tests 51 3.4.1 Uniaxial tensile tests at room temperature 51 3.4.2 Isothermal warm uniaxial tensile tests 52 3.5 Isothermal warm Nakajima tests 53 3.5.1 Specimen preparation 53 3.5.2 Forming tool system and experiment procedure 55 3.5.3 Strain measurement techniques 57 Chapter 4 Results and Discussion 60 4.1 Microstructural observation 60 4.1.1 EBSD analysis 60 4.1.2 DSC analysis 63 4.1.3 SAXS analysis 64 4.1.4 TEM analysis 65 4.2 Feasibility of AWF Process 69 4.2.1 Post-PB mechanical properties 69 4.2.2 Warm formability in the AWF process 71 4.3 Flow behaviour under different warm forming process routes 72 4.4 FLCs under different warm forming process routes 76 4.5 Effect of MPts characteristics on warm formability of AA7075 sheets 78 Chapter 5 Development of the Microstructure-Integrated Fracture Criterion 80 5.1 The Zhuang fracture criterion 80 5.1.1 Predicted FFLCs based on the Zhuang Criterion 83 5.2 The modified fracture criterion 85 5.2.1 Predicted FFLCs based on the modified fracture criterion 85 Chapter 6 Validation and Application of Proposed Model 90 6.1 FE model setup 90 6.2 FE model verification 93 6.3 Application of FE-based R-Value prediction and anisotropy analysis under various warm forming processes conditions 94 6.3.1 Specimen design for R-Value evaluation 94 6.3.2 Validation of the proposed R-values evaluation method 97 6.3.3 Anisotropy analysis under different warm forming process conditions 100 Chapter 7 Conclusions and Future Works 109 7.1 Conclusions 109 7.2 Future works 112 References 113 Appendix A 124

    AMS 2772H "Heat Treatment of Aluminum Alloy Raw Materials" SAE International, Warrendale, Pennsylvania, United States. (2023). https://doi.org/10.4271/AMS2772H
    Asano, K., and Hirano, K. I. "Precipitation Process in an Al–Zn–Mg Alloy" Transactions of the Japan Institute of Metals 9: 24–34 (1968). https://doi.org/10.2320/matertrans1960.9.24
    ASTM Standard E8/E8M-22 "Standard Test Methods for Tension Testing of Metallic Materials" ASTM International, West Conshohocken, Pennsylvania, United States (2022). https://doi.org/10.1520/E0008_E0008M-22
    Atkins, A. G. "Possible Explanation for Unexpected Departures in Hydrostatic Tension-Fracture Strain Relations." Metal Science 15: 81-83 (1981). https://doi.org/10.1179/msc.1981.15.2.81
    Barlat, F. and Vasudévan, A.K. "Influence of precipitate microstructure on flow and forming properties of an aluminum alloy sheet" Acta Metallurgica et Materialia 39(3): 391-400 (1991). https://doi.org/10.1016/0956-7151(91)90318-U
    Berg, L., Gjønnes, J., Hansen, V., Li, X., Knutson-Wedel, M., Waterloo, G., Schryvers, D., and Wallenberg, L. "GP-Zones in Al–Zn–Mg Alloys and Their Role in Artificial Aging" Acta Materialia 49: 3443–3451 (2001). https://doi.org/10.1016/S1359-6454(01)00251-8
    Bouzekova-Penkova, A., and Miteva, A. "Some Aerospace Applications of 7075 (B95) Aluminium Alloy" Aerospace Research in Bulgaria 34: 165–179 (2022). https://doi.org/10.3897/arb.v34.e15
    Bucci, R., Warren, C., and Starke, E. Jr. "Need for new materials in aging aircraft structures" Journal of Aircraft 37 (1):122–129 (2000). https://doi.org/10.2514/2.2571
    Chen, C. H., Lee, R. S., and Gau, J. T. "Size effect and forming-limit strain prediction for microscale sheet metal forming of stainless steel 304" Journal of Strain Analysis for Engineering Design 45(4): 283–299 (2010). https://doi.org/10.1243/03093247JSA585
    Chen, H., Chen, Z., Ji, G., Zhong, S., Wang, H., Borbély, A., Ke, Y., Bréchet, Y. "Experimental and modelling assessment of ductility in a precipitation hardening Al–Mg–Sc–Zr alloy" International Journal of Plasticity 139: 102971 (2021). https://doi.org/10.1016/j.ijplas.2021.102971
    Chen, J., Gong, P., and Yang, L. "Forming limit evaluation for AA5182 aluminum alloy at warm temperatures based on M–K model" Journal of Materials Engineering and Performance 29: 1176–1184 (2020). https://doi.org/10.1007/s11665-020-04644-w
    Cheng, L. M., Poole, W. J., Embury, J. D., and Lloyd, D. J. "The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030" Metallurgical and Materials Transactions A 34: 2473–2481 (2003). https://doi.org/10.1007/s11661-003-0007-2
    Cheng, T.-C. "Study on formability evaluation in electromagnetic forming process of aluminium alloy sheet" Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan. PhD dissertation (2017). https://hdl.handle.net/11296/5adv2z
    Chung, T.-F., Yang, Y.-L., Huang, B.-M., Shi, Z., Lin, J., Ohmura, T., and Yang, J.-R. " Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy" Acta Materialia 149: 377–387 (2018). https://doi.org/10.1016/j.actamat.2018.02.045
    Chung, T.-F., Yang, Y.-L., Shiojiri, M., Hsiao, C.-N., Li, W.-C., Tsao, C.-S., Shi, Z., Lin, J., and Yang, J.-R. "An atomic scale structural investigation of nanometre-sized η precipitates in the 7050 aluminium alloy" Acta Materialia 174: 351–368 (2019). https://doi.org/10.1016/j.actamat.2019.05.041
    Chu, X., Leotoing, L., Guines, D., and Ragneau, E., "Temperature and strain rate influence on AA5086 forming limit curves: Experimental results and discussion on the validity of the M–K model" International Journal of Mechanical Sciences 78: 27–34 (2014). https://doi.org/10.1016/j.ijmecsci.2013.11.002
    Clark, J. B. " Age hardening in a Mg-9 wt.% Al alloy" Acta Metallurgica 16 (2): 141-152 (1968). https://doi.org/10.1016/0001-6160(68)90109-0
    Conrads, L., Liebsch, C., and Hirt, G. "Increasing the energy absorption capacity of structural components made of low alloy steel by combining strain hardening and local heat treatment" Procedia Engineering 207: 257- 262 (2017). https://doi.org/10.1016/j.proeng.2017.10.771
    Den Uijl, N.J. and Carless, L.J. "3 - Advanced metal-forming technologies for automotive applications" Advanced Materials in Automotive Engineering: 28-56 (2012). https://doi.org/10.1533/9780857095466.28
    Deschamps, A., and Brechet, Y. "Influence of predeformation and ageing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress" Acta Materialia 47: 293–305 (1998). https://doi.org/10.1016/S1359-6454(98)00296-1
    Deschamps, A., Texier, G., Ringeval, S., and Delfaut-Durut, L. "Influence of cooling rate on the precipitation microstructure in a medium strength Al–Zn–Mg alloy" Materials Science and Engineering: A 501(1-2): 133-139 (2009). https://doi.org/10.1016/j.msea.2008.09.067
    DiCecco, S., Di Ciano, M., Butcher, C., and Worswick, M. "Effect of Initial Temper on the Warm Forming Characteristics of a High Strength 7000-Series Al–Zn–Mg–Cu Alloy" IOP Conference Series: Materials Science and Engineering 1238: 012087 (2022). https://doi.org/10.1088/1757-899X/1238/1/012087
    Elfakir, O. "Studies on the solution heat treatment, forming and in-die quenching process in the production of lightweight alloy components" Department of Mechanical Engineering, Imperial College London, London, United Kingdom, pp. 116- 125. PhD thesis. (2015)
    Engler, O. "Effect of precipitation state on plastic anisotropy in sheets of the age-hardenable aluminium alloys AA 6016 and AA 7021" Materials Science and Engineering: A 830: 142324 (2022). https://doi.org/10.1016/j.msea.2021.142324
    Evers, L., Brekelmans, W., and Geers, M. "Scale dependent crystal plasticity framework with dislocation density and grain boundary effects" International Journal of Solids and Structures 41: 5209–5230 (2004). https://doi.org/10.1016/j.ijsolstr.2004.04.021
    Feng, D., Zhang, X. M., Liu, S. D., Wang, T., Wu, Z. Z., and Guo, Y. W. "The Effect of Pre-Ageing Temperature and Retrogression Heating Rate on the Microstructure and Properties of AA7055" Materials Science and Engineering: A 588: 34–42 (2013). https://doi.org/10.1016/j.msea.2013.09.011
    Freiberg, D., Zhu, W., Park, J.-S., Almer, J. D., and Sanders, P. "Precipitate Characterization in Model Al-Zn-Mg-(Cu) Alloys Using Small-Angle X-ray Scattering" Metals 10(7): 959 (2020). https://doi.org/10.3390/met10070959
    Garrett, R. P., Lin, J. and Dean, T. A., "Solution Heat Treatment and Cold Die Quenching in Forming AA 6xxx Sheet Components: Feasibility Study" Advanced Materials Research 6–8: 673-80 (2005). https://doi.org/10.1016/j.ijplas.2004.11.002
    Ghosh, M., Miroux, A., and Kestens, L. A. I. "Experimental study and modelling of the role of solutes, precipitates and temperature on the work-hardening of AA6xxx aluminium alloys" Materials Science and Engineering: A 805: 140615 (2021). https://doi.org/10.1016/j.msea.2020.140615
    Grabner, F., and Österreicher, J. "A materials science-based approach to finite element simulation of warm-forming of Al–Mg–Zn alloys" Key Engineering Materials 926: 744–751 (2022). https://doi.org/10.4028/p-fpbrul
    Hadjadj, L., Amira, R., Hamana, D., and Mosbah, A. "Characterization of precipitation and phase transformations in Al–Zn–Mg alloy by differential dilatometry" Journal of Alloys and Compounds 462: 279–283 (2008). https://doi.org/10.1016/j.jallcom.2007.08.016
    Harant M, Verleysen P, Forejt M, and Kolomy S. "The Effects of Strain Rate and Anisotropy on the Formability and Mechanical Behaviour of Aluminium Alloy 2024-T3" Metals 14(1): 98 (2024). https://doi.org/10.3390/met14010098
    Hsiao, H. " Development of a Novel Warm Forming Process for 7075-T6 Aluminum Alloys" Department of Mechanical Engineering, pp.33-35, National Taipei University of Technology, Taipei, Taiwan. Master thesis. (2024)
    Hsiao, T.-J., Chiu, P.-H., Tai, C.-L., Tsao, T.-C., Tseng, C.-Y., Lin, Y.-X., Chen, H.-R., Chung, T.-F., Chen, C.-Y., Wang, S.-H.,and Yang, J-R. "Effect of Cu additions on the evolution of eta-prime precipitates in aged AA7075 Al–Zn–Mg–Cu alloys" Metals 12(12): 2120 (2022). https://doi.org/10.3390/met12122120
    Hua, L., Zhang, W., Ma, H., and Hu, Z. "Investigation of Formability, Microstructures and Post-Forming Mechanical Properties of Heat-Treatable Aluminum Alloys Subjected to Pre-Aged Hardening Warm Forming" International Journal of Machine Tools and Manufacture 169: 103799 (2021). https://doi.org/10.1016/j.ijmachtools.2021.103799
    Hu, Q., Zhang, F., Li, X., and Chen, J. "Overview on the prediction models for sheet metal forming failure: Necking and ductile fracture" Acta Mechanica Solida Sinica 31: 259–289 (2018). https://doi.org/10.1007/s10338-018-0026-6
    Huo, W., Hou, L., Zhang, Y., and Zhang, J. "Warm Formability and Post-Forming Microstructure/Property of High-Strength AA 7075-T6 Al Alloy" Materials Science and Engineering: A 675: 44–54 (2016). https://doi.org/10.1016/j.msea.2016.08.054
    Hwang, H. J., Davis, Lee, C.-G., Kayani, S. H., Kim, H.-W., Lee J. I., Kim, S.-H., and Jo, Y. H. "Effect of retrogression treatment on microstructure, mechanical properties, and corrosion behavior in Al–Zn–Mg–Cu alloy" Journal of Materials Research and Technology 36: 10577-10590 (2025). https://doi.org/10.1016/j.jmrt.2025.05.236
    ISO 12004-1:2020 "Metallic materials - Determination of forming-limit curves for sheet and strip" International Organization for Standardization, Geneva, Switzerland (2020).
    Ivanoff, T. A., Carter, J. T., Hector, L. G., Jr., and Taleff, E. M. "Retrogression and Reaging Applied to Warm Forming of High-Strength Aluminum Alloy AA7075-T6 Sheet" Metallurgical and Materials Transactions A 50: 1545–1561(2019). https://doi.org/10.1007/s11661-018-5084-3
    Jacumasso, S. C., Martins, J. P., and Carvalho, A. L. M. "Analysis of Precipitate Density of an Aluminium Alloy by TEM and AFM" REM – International Engineering Journal 69 (4): 451–457 (2016). https://doi.org/10.1590/0370-44672016690019
    Jaśkiewicz, K., Skwarski, M., Kaczyński, P., et al. "Warm Sheet Metal Forming of Energy-Absorbing Elements Made from 7075 Aluminum Alloy in the Hardened State T6" International Journal of Advanced Manufacturing Technology 119: 3157–3179 (2022). https://doi.org/10.1007/s00170-021-08549-3
    JEOL "JEM-2100 Electron Microscope" https://www.jeol.com/products/scientific/tem/JEM-2100.php.
    Jiang, Y. F., Ding, H., Cai, M. H., Chen, Y., Liu, Y., and Zhang, Y. S. "Investigation into the hot forming-quenching integrated process with cold dies for high strength aluminum alloy" Materials Characterization 158: 109967 (2019). https://doi.org/10.1016/j.matchar.2019.109967
    Jo, H., Park, C., Kim, D., Jeong, T., and Lee, W. "Microstructure, mechanical properties and thermal conductivity of Al-1.2Fe alloy fabricated by laser-directed energy deposition" Materials Characterization 227:115327 (2025). https://doi.org/10.1016/j.matchar.2025.115327
    Kanno, M., Araki, I., and Cui, Q. "Precipitation Behaviour of 7000 Alloys During Retrogression and Reaging Treatment" Materials Science and Technology 10 (7): 599–603 (1994). https://doi.org/10.1179/mst.1994.10.7.599
    Khalfallah, A., Abderrahmane Raho, A., and Amzert, S. "Precipitation kinetics of GP zones, metastable η′ phase and equilibrium η phase in Al–Zn–Mg alloy" Transactions of Nonferrous Metals Society of China 29 (12): 2530–2542 (2019). https://doi.org/10.1016/S1003-6326(19)64932-0
    Kheradmand, M. B., Dehghan, M. H., and Karimzadeh, F. "Effect of thermomechanical treatment of Al–Zn–Mg–Cu with minor amount of Sc and Zr on the mechanical properties" Materials 15 (2): 589 (2022). https://doi.org/10.3390/ma15020589
    Kilic, S., Kacar, I., Sahin, M., and Ozturk, F. "Effects of aging temperature, time, and pre-strain on mechanical properties of AA7075" Materials Research 22 (5): e20190006 (2019). https://doi.org/10.1590/1980-5373-MR-2019-0006
    Kumar, M., and Ross, N. G. "Influence of Temper on the Performance of a High-Strength Al–Zn–Mg Alloy Sheet in the Warm Forming Processing Chain" Journal of Materials Processing Technology 231: 189–198 (2016). https://doi.org/10.1016/j.jmatprotec.2015.12.026
    Lee, R. S., Chiu, H. Y., Chen, Y. J., Lo, Y. C., and Wang, C. C. "Evaluation of fracture criteria considering complex loading paths in cobalt alloy tube hydroforming" Materials Transactions 53 (5): 807–811 (2012). https://doi.org/10.2320/matertrans.MF201119
    Lee, R. S., and Chien, T. W. "Formability evaluation using modified Cockcroft criterion with strain paths for sheet metal forming" Key Engineering Materials 626: 495–501(2014). https://doi.org/10.4028/www.scientific.net/KEM.626.495
    Lee, Y.-S., Koh, D.-H., Kim, H.-W., and Ahn, Y.-S. "Improved Bake-Hardening Response of Al–Zn–Mg–Cu Alloy Through Pre-Aging Treatment" Scripta Materialia 147: 45–49 (2018). https://doi.org/10.1016/j.scriptamat.2017.12.030
    Li, G., Liu, C., Ma, P., Yang, J., and Feng, Z. "Improving formability and retaining dislocation hardening of heavily cold-worked Al alloy by fast heating and fast deformation" Materials Science and Engineering: A 819: 141455 (2021). https://doi.org/10.1016/j.msea.2021.141455
    Li, N., Zheng, J., Zheng, K., Lin, J., and Davies, C. "Fast ageing method for stamped heat-treatable alloys" European Patent EP 3,344, 791 B1, Innovations Limited London, London, Nov. 16, 2022.
    Li, R., Zheng, Z., Zhan, M., Zhang, H., Cui, X., and Lei, Y. "Fracture prediction for metal sheet deformation under different stress states with uncoupled ductile fracture criteria" Journal of Manufacturing Processes 73: 531–543 (2022). https://doi.org/10.1016/j.jmapro.2021.11.023
    Li, X., Xiong, B., Zhang, Y., Hua, C., Wang, F., Zhu, B., and Liu, H. "Effect of one-step aging on microstructure and properties of a novel Al–Zn–Mg–Cu–Zr alloy" Science in China Series E: Technological Sciences 52: 67–71 (2009). https://doi.org/10.1007/s11431-008-0277-4
    Li, X., Xiong, B., Zhang, Y., Zhu, B., Liu, H., and Li, Z. "The effect of RRA on the microstructure and properties of a novel Al–Zn–Mg–Cu–Zr alloy" International Journal of Modern Physics B 23(06n07): 900–905 (2009). https://doi.org/10.1142/S021797920906021X
    Liu, C., He, J., Feng, Z., Ma, P., and Zhan, L. "Integrating Reversion Ageing and Forming of High-Strength Al Alloys: Principles and Theoretical Basis" International Journal of Machine Tools and Manufacture 194: 104091 (2024). https://doi.org/10.1016/j.ijmachtools.2023.104091
    Liu, Y., Zhu, B., Wang, Y., Li, S. and Zhang, Y. "Fast solution heat treatment of high strength aluminum alloy sheets in radiant heating furnace during hot stamping" International Journal of Lightweight Materials and Manufacture 3: 20-25 (2020). https://doi.org/10.1016/j.ijlmm.2019.11.004
    Mainguy, G., Balan, T., and Lemoine, X. "Comparison of nonlinear strain path correction models for the FLD characterization" MATEC Web of Conferences 408 : 01064, IDDRG 2025 (2025). https://doi.org/10.1051/matecconf/202540801064
    Marciniak, Z. and Kuczyński, K. "Limit strains in the processes of stretch-forming sheet metal" International Journal of Mechanical Sciences 9(9): 609–612 (1967). https://doi.org/10.1016/0020-7403(67)90066-5
    Mitukiewicz, G., Kuzalski, C., Goszczak, J., Leyko, J., Dimitrova, Z., and Batory, D. "Analysis of the Cruciform Sample Shapes for Bi-Axial Tensile Tests Based on the Geometries Currently Presented in the Literature" Advances in Science and Technology – Research Journal 15(2):156-168 (2021). https://doi.org/10.12913/22998624/135359
    Mousanezhad, D., Ghosh, R., Ajdari, A., and Hamouda, A.M.S., Nayeb-Hashemi, H. and Vaziri, A. "Impact resistance and energy absorption of regular and functionally graded hexagonal honeycombs with cell wall material strain hardening" International Journal of Mechanical Sciences 89: 413-422 (2014). https://doi.org/10.1016/j.ijmecsci.2014.10.012
    Mukhopadhyay, A. "Guinier-Preston Zones in a High-Purity Al–Zn–Mg Alloy" Philosophical Magazine Letters 70 (3): 135–140 (1994). https://doi.org/10.1080/09500839408240966
    Newsham, A., Kohnstamm, S., Otto Naess, L., and Atela, J. "Agricultural Commercialisation Pathways Climate Change and Agriculture" Working paper 9. The Institute of Development Studies and Partner Organisations, University of London, London, United Kindom. Report. (2018). https://hdl.handle.net/20.500.12413/13715
    NSRRC "Small-Angle X-Ray Scattering at NSRRC" https://www.nsrrc.org.tw/www/eng/endstation/BL23A/saxs.
    Ogata, S., Li, J., and Yip, S. "Ideal pure shear strength of aluminum and copper" Science 298 (5594): 807–811 (2002). https://doi.org/10.1126/science.1076652
    Österreicher, J. A., Grabner, F., Tunes, M. A., Coradini, D. S. R., Pogatscher, S., and Schlögl, C. M. "Two stepeageing of 7xxx series alloys with an intermediate warm-forming step " Journal of Materials Research and Technology 12: 1508–1515 (2021). https://doi.org/10.1016/j.jmrt.2021.03.062
    Ozturk, F. and Lee, D. "Experimental and numerical analysis of out-of-plane formability test" Journal of Materials Processing Technology 170 (1-2): 247-253 (2005). https://doi.org/10.1016/j.jmatprotec.2005.05.010
    Panagos, P., Wang, Y., McCartney, D. G., Li, M., Ghaffari, B., Zindel, J. W., Miao, J., Makineni, S., Allison, J. E., Shebanova, O., Robson, J. D., Lee, P. D. "Characterising precipitate evolution in multi-component cast aluminium alloys using small-angle X-ray scattering" Journal of Alloys and Compounds 703: 344–353 (2017). https://doi.org/10.1016/j.jallcom.2017.01.293
    Park, J. K., and Ardell, A. J. "Precipitate Microstructure of Peak-Aged 7075 Al" Acta Metallurgica 22: 1115–1119 (1988). https://doi.org/10.1016/S0036-9748(88)80114-5
    Pereira, R., Peixinho, N., and Costa, S. L. "A Review of Sheet Metal Forming Evaluation of Advanced High-Strength Steels (AHSS) " Metals 14(4): 394 (2024). https://doi.org/10.3390/met14040394
    Pishyar, H. "Constitutive behaviour and formability of pre-aged AA7075 sheet in a warm forming process" Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada, p.46. Master Thesis (2021). http://hdl.handle.net/10012/17651
    Prabhu, T. R. "An Overview of High-Performance Aircraft Structural Al Alloy AA7085" Acta Metallurgica Sinica (English Letters) 28 (7): 909–921 (2015). https://doi.org/10.1007/s40195-015-0275-z
    Rader, K. E., Carter, J. T., Hector, L. G., and Taleff, E. M. "Review of Retrogression Forming and Reaging for AA7075-T6 Sheet" Light Metals 2021: 206–211, The Minerals, Metals & Materials Series (2021). https://doi.org/10.1007/978-3-030-65396-5_30
    Raja Satish, D. and Ravi Kumar, D. "Formability of AA6061 alloy sheets in warm forming temperature range" Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233(3): 413-425 (2019) https://doi.org/10.1177/146442071982950
    Reuther, F., Lieber, T., Heidrich, J., and Kräusel, V. "Numerical Investigations on Thermal Forming Limit Testing with Local Inductive Heating for Hot Forming of AA7075" Materials 14 (8):1882 (2021). https://doi.org/10.3390/ma14081882
    Royne, S., Laurent, H., and Maillard, A. "Optimum Heating Time for Warm Forming of AA7075 Aluminum Alloy in T6 Condition" International Journal of Advanced Manufacturing Technology 133: 6005–6021(2024). https://doi.org/10.1007/s00170-024-14084-8
    Samberger, S., Weißensteiner, I., Stemper, L., Kainz, C., Uggowitzer, P. J., and Pogatscher, S. "Fine-grained aluminium crossover alloy for high-temperature sheet forming" Acta Materialia 253: 118952 (2023). https://doi.org/10.1016/j.actamat.2023.118952
    Samarendra, R., and Shibayan, R. "New-age Al–Cu–Mn–Zr (ACMZ) alloy for high temperature–high strength applications: A review", Aluminium Alloys - Design and Development of Innovative Alloys, Manufacturing Processes and Applications, IntechOpen, London, United Kingdom, pp. 5 (2022). https://doi.org/10.5772/intechopen.104533
    Sha, G., and Cerezo, A. "Early-Stage Precipitation in Al–Zn–Mg–Cu Alloy (7050)" Acta Materialia 52 (15): 4503–4516 (2004). https://doi.org/10.1016/j.actamat.2004.06.025
    Song, W., "Precipitation Engineering", Nano-Engineering of High Strength Steels, Springer, Cham, pp. 89–117 (2024). https://doi.org/10.1007/978-3-031-42967-5_5
    Speidel, M. O., and Hyatt, M. V., Advances in Corrosion Science and Technology, Vol. 2, Plenum Press, New York, U.S.A., pp. 115–127 (1972).
    Starink, M. J. "Effect of compositional variations on characteristics of coarse intermetallic particles in overaged 7000 aluminium alloys" Materials Science and Technology 17: 1324–1328 (2001). https://doi.org/10.1179/026708301101509449
    Stiller, K., Lefebvre, W., Danoix, F., Auger, P., and Blavette, D. "Investigation of Precipitation in an Al–Zn–Mg Alloy after Two-Step Ageing Treatment at 100 and 150 °C" Materials Science and Engineering: A 270 (1): 55–63 (1999). https://doi.org/10.1016/S0921-5093(99)00231-2
    Tahmasbi, A., Samuel, A. M., Zedan, Y., Songmene, V., and Samuel, F. H. "Effect of aging treatment on the strength and microstructure of 7075-based alloys containing 2% Li and/or 0.12% Sc" Material 16 (23): 7375 (2023). https://doi.org/10.3390/ma16237375
    TA Instruments "Q series" https://www.tainstruments.com/category/end-of-life-products/q-series/.
    Tebbe, P. A. and Kridli, G. T. "Warm forming of aluminium alloys: an overview and future directions" International Journal of Materials and Product Technology 21:24–40 (2004). https://doi.org/10.1504/IJMPT.2004.004737
    Thomas, H. C. Mechanical Behavior of Materials: Second Edition, Waveland Press, Inc., Illinois, United States, p. 232. (2000)
    Thronsen, E., Frafjord, J., Friis, J., Marioara, C., Wenner, S., Andersen, S., and Holmestad, R. "Studying GPI Zones in Al–Zn–Mg Alloys by 4D-STEM" Materials Characterization 185: 111675 (2022). https://doi.org/10.1016/j.matchar.2021.111675
    Totten, G. E. and MacKenzie, D. S. ASM Handbook, Volume 4E: Heat Treating of Nonferrous Alloys, ASM International, Materials Park, OH, p.105 and p. 232 (2016).
    Wang, H., Luo, Y., Friedman, P., Chen, M., and Gao, L. "Warm forming behavior of high strength aluminum alloy AA7075" Transactions of Nonferrous Metals Society of China 22: 1–7 (2012). https://doi.org/10.1016/S1003-6326(11)61131-X
    Wang, Y., Zhao, H., Chen, X., Gault, B., Brechet, Y., and Hutchinson, C. "The effect of shearable clusters and precipitates on dynamic recovery of Al alloys" Acta Materialia 265: 119643 (2024). https://doi.org/10.1016/j.actamat.2023.119643
    White, M., Schulte, T., and Masse, J. P. "High-Strength Aluminum Applications for a Battery Electric SUV Example: Aluminum B-pillar" Alumobility Webinar (2021). https://reurl.cc/0a1V69
    White, M. "The rationale for converting a steel intensive vehicle body to aluminum" Alumobility Webinar (2023). https://reurl.cc/5b17ry
    Wiesenmayer, S., März, R., and Merklein, M. "Numerical study on local short-term heat treatments for joining by forming of high-strength 7xxx aluminum" Production Engineering Research and Development 17: 829–845 (2023). https://doi.org/10.1007/s11740-023-01205-7
    Xiao, W. and Wang, B. "Behaviors and modeling of thermal forming limits of AA7075 aluminum sheet" Archives of Civil and Mechanical Engineering 20: 10. (2020). https://doi.org/10.1007/s43452-020-0009-5
    Xu, D., Rometsch, P., and Birbilis, N. "Improved solution treatment for an as-rolled Al–Zn–Mg–Cu alloy. Part I. Characterisation of constituent particles and overheating" Materials Science and Engineering: A 534: 234–243 (2012). https://doi.org/10.1016/j.msea.2011.11.065
    Xu, S., Lei, D., Yang, X., Lu, X., Zhou, L., and Chen, J. "Microstructural and mechanical property evolution of TiC/Ti-reinforced Al–Zn–Mg–Cu alloy through wire arc additive manufacturing under intrinsic heat treatment" Materials Science and Engineering: A 926: 147937 (2025). https://doi.org/10.1016/j.msea.2025.147937
    Zhang, W., Pang, Q., Lu, J., and Hu, Z. "Comparative Study on Deformation Behavior, Microstructure Evolution and Post-Forming Property of an Al–Zn–Mg–Cu Alloy in a Novel Warm Forming Process" Journal of Materials Processing Technology 312: 117854 (2023). https://doi.org/10.1016/j.jmatprotec.2022.117854
    Zheng, J.-H., Lin, J., Lee, J., Pan, R., Li, C., and Davies, C. M. "A novel constitutive model for multi-step stress relaxation ageing of a pre-strained 7xxx series alloy" International Journal of Plasticity 106: 31- 47 (2018). https://doi.org/10.1016/0001-6160(68)90109-0
    Zheng, J.-H., Dong, Y., Zheng, K., Dong, H., Lin, J., Jiang, J., and Dean, T. A. "Experimental Investigation of Novel Fast–Ageing Treatments for AA6082 in Supersaturated Solid Solution State" Journal of Alloys and Compounds 810: 151934 (2019). https://doi.org/10.1016/j.jallcom.2019.151934
    Zheng, W. T., Zhang, S. H., Sorgente, D., Tricarico, L, and Palumbo, G. "M–K model based forming limit prediction of aluminum–lithium alloy 2060 and its application in hot stamping" International Journal of Advanced Manufacturing Technology 127: 5293–5306 (2023). https://doi.org/10.1007/s00170-023-11898-w
    Zhuang, W. L. "應用有限元素法於板金成形極限之模擬分析" Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan. Master Thesis. (1990)
    Zou, Y., Wu, X., Tang, S., Zhu, Q., Song, H., and Cao, L. "Co-Precipitation of T′ and η′ Phase in Al–Zn–Mg–Cu Alloys" Materials Characterization 169: 110610 (2020). https://doi.org/10.1016/j.matchar.2020.110610
    Zhu, L., Liu, Z., and Zhang, Z. "Investigation on Strengthening of 7075 Aluminum Alloy Sheet in a New Hot Stamping Process with Pre-Cooling" The International Journal of Advanced Manufacturing Technology 103: 4739–4746 (2019). https://doi.org/10.1007/s00170-019-03890-0
    李源澄、吳耕甫、許光城和周語新 "結構光系統應用於泛用型板金成形網格應變量測之研究" 第11屆台灣塑性加工研討會論文集 :TSTP2024-018, 彰化市, 台灣 (2024).

    QR CODE