簡易檢索 / 詳目顯示

研究生: 劉玉峰
Liu, Yu-Feng
論文名稱: 脈衝波形對壓電式噴墨技術微液滴行為與噴印品質之研究
Study of Driving Waveform on Micro-Droplet Formation Behavior and Printing Quality in Piezoelectric Ink-Jet Printing
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 103
中文關鍵詞: 噴墨製程數值模擬壓電式
外文關鍵詞: piezoelectric, inkjet printing, simulation
相關次數: 點閱:60下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓電噴墨技術為一種非接觸式的直接製造方法,除了可以精確的控制液滴的尺寸與位置外,不需要光罩或是任何相關的微影技術,透過微液滴沉積於基板上,可以堆疊出特定的圖形與結構。微液滴的形成過程、大小與飛行速度除了受到流體本身特性的影響,同時受到操作的脈衝波形、電壓和頻率等影響。為了提高製程速度及噴印品質,各種影響噴墨過程的參數皆需要得到適當的控制。
    本研究使用FLOW-3D®進行數值模擬與微液滴噴印行為觀察,探討壓力波形與液滴形成之間的關係,模擬系統以壓電式-收縮管型噴墨頭為載具,模擬液滴生成與飛行之完整過程,並以實驗觀測與量測結果來驗證模擬系統的準確性。在模擬系統被驗證可靠之後,藉由模擬系統探討在不同操作脈衝條件下液滴的生成及噴射行為;實驗系統則藉由輸入不同的脈衝波形訊號參數,並使用電荷耦合攝影機觀測液滴形成的過程,分析輸入訊號參數對於液滴體積、速度等變化,分析討論噴墨管內部壓力傳遞情形,利用本研究的實驗結果,瞭解其內部壓力波傳遞條件,尋找出有效驅動波形以及作動參數條件,達到精確控制收縮管型壓電式噴墨頭的目標。

    Inkjet printing technology is a non-contact direct fabrication process. It can not only precisely control the droplet size and the deposit position, but fabricate desired pattern or structure without any mask-process and/or and lithographic technology. The droplet formation process was not only affected by the fluid properties, but also the input driving waveform conditions, such as waveform shape, voltage, and frequency etc. In order to improve the processing throughput and printing quality of inkjet printing technology, the droplet stability and ejection speed need to be well controlled.
    The fluid dynamic program FLOW-3D® and inkjet printing experimental observations were employed to investigate the relationship between the driving waveform and resonance pressure of squeeze-mode piezoelectric inkjet printers. Through the simulation results and experimental analysis, the detailed pressure history under various driving conditions is obtained. Furthermore, the individual contribution of each waveform parameter in droplet formation is evaluated. These findings will help designers not only to design the optimal control driving waveform, but also provide valuable information for printhead design.

    目錄 摘要 I Abstract II 誌謝 III 目錄 V 表目錄 VIII 圖目錄 IX 符號對照表 XII 英文縮寫及全名對照表 XIV 第一章 前言 1 1.1 研究背景 1 1.2 文獻回顧 1 1.2.1 噴墨製程技術發展歷史 1 1.2.2 壓電噴墨技術之理論與實務 5 1.2.3 壓電噴墨技術之應用 9 1.3 研究目的 10 第二章 數值模擬 16 2.1 控制方程式 16 2.2 自由表面 17 2.3 邊界條件 18 2.3.1 自由液面之邊界條件 18 2.3.2 邊牆之邊界條件 19 第三章 實驗方法 22 3.1 實驗原理 22 3.1.1 微液滴行為 23 3.1.2 液滴撞擊行為 24 3.1.3 無因次分析 27 3.2 實驗步驟 28 3.2.1 壓電噴墨設備 28 3.2.2 工作流體 29 3.2.3 噴墨條件 29 3.2.4 壓電噴墨波形參數 30 3.2.5 基板準備及圖形噴印條件 31 3.3 數值模擬系統設定 31 第四章 結果與討論 48 4.1 脈衝波形對液滴之行為 48 4.1.1 液滴行為之模擬結果與實驗驗證 48 4.1.2 脈衝時間對液滴行為之影響分析 49 4.1.2.1 脈衝時間Trise對液滴行為影響 50 4.1.2.2 脈衝時間Tdwell對液滴行為影響 51 4.1.2.3 脈衝時間Tfall對液滴行為影響 51 4.2 應用於不同黏度液體之脈衝波形 52 4.2.1 低黏度流體之噴墨行為 54 4.2.2 高黏度流體之噴墨行為 55 4.3 奈米銀懸浮溶液與硝酸銀水溶液噴印導線之研究 56 4.3.1 脈衝電壓的影響 56 4.3.2 單顆液滴噴印於基板之觀察 57 4.3.3 噴印導線於基板之觀察 59 第五章 結論 90 參考文獻 92

    參考文獻
    1. S. F. Pond, “Inkjet technology and product development strategies”, Torrey Pines Research. (2000).
    2. H. Wijshoff, “The dynamics of the piezo inkjet printhead operation”, Physics Reports, 491 (2010), 77-177.
    3. J. Brünahl, “Physics of piezoelectric shear mode inkjet actuators”, Ph.D. Thesis Royal Institute of Technology Stockholm, (2003).
    4. R. G. Sweet, “High frequency recording with electrostatically deflected ink-jets”, Rev. Sci. Instrum., 36 (1965) 131.
    5. C. H. Hertz and S. I. Simonsson, “Intensity modulation of ink-jet oscillographs”, Med. Biol. Eng., 7 (1969) 337.
    6. N. Bugdayci, D. B. Bogy and F. E. Talke, “Axisymmetric motion of radially polarized piezoelectric cylinders used in ink jet printing”, IBM J. Res. Dev., 27 (1983)171.
    7. E. Stemme and S. G. Larsson, “A piezoelectric capillary injector”, IEEE Trans. Electron Devices, 20 (1973) 14.
    8. S. D. Howkins, “Ink jet method and apparatus”, (US Patents, 1984).
    9. H. C. Lee, “Drop formation in a liquid jet”, IBM J. Res. Dev., 18 (1974), 364-69.
    10. C. A. Bruce, “Dependence of ink jet dynamics on fluid characteristics”, IBM J. Res. Dev., 20 (1976), 258-70.
    11. J. D. Beasley, “Model for fluid ejection and refill in an impulse drive jet”, Photogr. Sci. Eng., 21 (1977), 78-82.
    12. W. T. Pimbley and H. C. Lee, “Satellite droplet formation in a liquid jet”, IBM J. Res. Dev., 21 (1977), 21-30.
    13. D. B. Bogy, S. J. Shine and F. E. Talke, “Finite difference solution of the cosserat fluid jet equations”, Journal of Computational Physics, 38 (1980), 294-326.
    14. D. B. Bogy and F. E. Talke, “Experimental and theoretical study of wave-propagation phenomena in drop-on-demand ink jet devices”, IBM J. Res. Dev., 28 (1984), 314-321.
    15. J. E. Fromm, “Numerical calculation of the fluid dynamics of drop-on-demand jets”, IBM J. Res. Dev., 28 (1984), 322-333.
    16. T. W. Shield, D. B. Bogy, F. E. Talke, “Drop formation by DOD ink-jet nozzles: a comparison of experiment and numerical simulation”, IBM J. Res. Dev., 31 (1987), 96-110.
    17. A. Asai, T. Hara, and I. Endo, “One-dimensional model of bubble growth and liquid flow in bubble jet printers”, Japanese Journal of Applied Physics, 26 (1987), 1794-801.
    18. A. Asai, “Application of the nucleation theory to the design of bubble jet printers”, Japanese Journal of Applied Physics, 28 (1989), 909-15.
    19. A. Asai, “Bubble dynamics in boiling under high heat flux pulse heating”, ASME Journal of Heat Transfer, 113 (1991).
    20. A. Asai, “Three-dimensional calculation of bubble growth and drop ejection in a bubble jet printer”, ASME J. Fluids Eng., 114 (1992), 638-38.
    21. J. Fukai, Y. Shiiba, T. Yamamoto, O. Miyatake, D. Poulikakos, CM Megaridis, and Z. Zhao, “Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modeling”, Physics of Fluids, 7 (1995), 236.
    22. N. Hatta, H. Fujimoto, and H. Takuda, “Deformation process of a water droplet impinging on a solid surface”, Journal of Fluids Engineering, 117 (1995), 394-401.
    23. M. Passandideh Fard, “Capillary effects during droplet impact on a solid surface”, Physics of Fluids, 8 (1996).
    24. P. H. Chen, W. C. Chen, and S. H. Chang, “Bubble growth and ink ejection process of a thermal ink jet printhead”, International Journal of Mechanical Sciences, 39 (1997), 683-95.
    25. F. G. Tseng, C. J. Kim, and C. M. Ho, “A microinjector free of satellite drops and characterization of the ejected droplets”, ASME IMECE Micro-Electro-Mechanical Systems (MEMS), 66 (1998), 89-95.
    26. P. H. Chen, H. Y. Peng, H. Y. Liu, S. L. Chang, T. I. Wu, and C. H. Cheng, “Pressure response and droplet ejection of a piezoelectric inkjet printhead”, International Journal of Mechanical Sciences, 41 (1999), 235-48.
    27. J. T. Yeh, “Simulation and industrial applications of inkjet”, Proc. of the 7th National Computational Fluid Dynamics Conference (2000).
    28. J. T. Yeh, “A VOF-FEM and coupled inkjet simulation”, Proc. of ASME Fluids Engineering Division Summer Meeting, (2001), 1-5.
    29. T. M. Liou, K. C. Shih, S. W. Chau and S. C. Chen, “Three dimensional simulations of the droplet formation during the inkjet printing process”, International Communications in Heat and Mass Transfer, 29 (2002), 1109-18.
    30. J. Q. Feng, “A general fluid dynamic analysis of drop ejection in drop-on-demand ink jet devices”, Journal of Imaging Science and Technology, 46 (2002), 398-408.
    31. F. Pan, J. Kubby, and J. Chen, “Numerical simulation of fluid-structure interaction in a MEMs diaphragm drop ejector”, Journal of Micromechanics and Microengineering, 12 (2001), 70.
    32. M. B. G. Wassink, N. J. M. Bosch, O. H. Bosgra, and S. Koekebakker, “Enabling higher jet frequencies for an inkjet printhead using iterative learning control”, Proceedings of IEEE (2005), pp. 791-96.
    33. A. S. Yang, and W. M. Tsai, “Ejection process simulation for a piezoelectric microdroplet generator”, Journal of Fluids Engineering, 128 (2006), 1144.
    34. H. Wijshoff, “Manipulating drop formation in piezo acoustic inkjet”, Proc. of International Conference on Digital Printing Technologies, (2006), 646.
    35. A. K. Sen and J. Darabi, “Droplet ejection performance of a monolithic thermal inkjet print head”, Journal of Micromechanics and Microengineering, 17 (2007), 1420.
    36. Y. S. Chen, Y. L. Huang, C. H. Kuo, and S. H. Chang, “Investigation of design parameters for droplet generators driven by piezoelectric actuators”, International Journal of Mechanical Sciences, 49 (2007), 733-40.
    37. K. S. Kwon, and W. Kim, “A waveform design method for high-speed inkjet printing based on self-sensing measurement”, Sensors and Actuators A: Physical, 140 (2007), 75-83.
    38. T. Lindemann, H. Ashauer, Y. Yu, D. S. Sassano, R. Zengerle, and P. Koltay, “One inch thermal bubble jet printhead with laser structured integrated polyimide nozzle plate”, Journal of Microelectromechanical Systems, 16 (2007), 420-28.
    39. H. C. Wu, and H. J. Lin, “Effects of actuating pressure waveforms on the droplet behavior in a piezoelectric inkjet”, Materials Transactions, 51 (2010), 2269-76.
    40. M. Ezzeldin, P. van den Bosch, A. Jokic, and R. Waarsing, “Modelfree optimization based feedforward control for an inkjet printhead”, Proc. of IEEE International Conference on Control Applications (CCA) (2010), 967-72.
    41. A. A. Khalate, X. Bombois, R. Babuška, H. Wijshoff, and R. Waarsing, “Performance improvement of a drop-on-demand inkjet printhead using an optimization-based feedforward control method”, Control Engineering Practice, 19 (2011), 771-81.
    42. D. B. Wallace, and D. J. Hayes, “Micro-printing system for MEMs packaging using nano-structured materials”, Proc. of NanoEngineering World Forum (2003).
    43. D. J. Hayes, W. R. Cox, and D. B. Wallace, “Printing system for MEMs packaging”, Proc. of SPIE Micromachining & Microfabrication Conf. (2001), 25.
    44. J. Bharathan, and Y. Yang, “Polymer electroluminescent devices processed by inkjet printing: I. polymer light-emitting logo”, Applied Physics Letters, 72 (1998), 2660-62.
    45. S. C. Chang, J. Bharathan, Y. Yang, R. Helgeson, F. Wudl, M. B. Ramey, and J. R. Reynolds, “Dual-color polymer light-emitting pixels processed by hybrid inkjet printing”, Applied Physics Letters, 73 (1998), 2561-63.
    46. J. Zhang, P. Brazis, A. R. Chowdhuri, J. Szczech, and D. Gamota, “Investigation of using contact and non-contact printing technologies for organic transistor fabrication”, Proc. of MRS (2002).
    47. C.W. Hirt, and B.D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries”, Journal of Computational Physics, 39 (1981), 201-25.
    48. D. L. Youngs, “Time-dependent multi-material flow with large fluid distortion”, Numerical Methods for Fluid Dynamics, 24 (1982), 273-85.
    49. H. Dong, W. W. Carr, and J. F. Morris, “Visualization of drop-on-demand inkjet: drop formation and deposition”, Review of Scientific Instruments, 77 (2006), 085101-01-8.
    50. M. H. Tsai, and W. S. Hwang, “Effects of pulse voltage on the droplet formation of alcohol and ethylene glycol in a piezoelectric inkjet printing process with bipolar pulse”, Materials Transactions, 49 (2008), 331-38.
    51. J. Sumerel, A. Doraiswamy, and R. Narayan, “A Digital Printing of Bioinks”, (2006). p. 93-95; ISBN / ISSN: 0-89208-264-X
    52. H. Dong, W. W. Carr, and J. F. Morris, “An experimental study of drop-on-demand drop formation”, Physics of Fluids, 18 (2006), 072102.
    53. R. Rioboo, MH Adao, M. Voue, and J.D. Coninck, “Experimental evidence of liquid drop break-up in complete wetting experiments”, Journal of Materials Science, 41 (2006), 5068-80.
    54. Š. Šikalo, C. Tropea, and EN Ganić, “Dynamic wetting angle of a spreading droplet”, Experimental Thermal and Fluid Science, 29 (2005), 795-802.
    55. S. R. L. Werner, J. R. Jones, A. H. J. Paterson, R. H. Archer, and D. L. Pearce, “Droplet impact and spreading: droplet formulation effects”, Chemical Engineering Science, 62 (2007), 2336-45.
    56. G.O. Berim, and E. Ruckenstein, “Microcontact and macrocontact angles and the drop stability on a bare surface”, The Journal of Physical Chemistry B, 108 (2004), 19339-47.
    57. F. T. Dodge, “The spreading of liquid droplets on solid surfaces”, Journal of Colloid and Interface Science, 121 (1988), 154-60.
    58. H. Dong, W. W. Carr, D. G. Bucknall, and J. F. Morris, “Temporally‐resolved inkjet drop impaction on surfaces”, AIChE Journal, 53 (2007), 2606-17.
    59. R. Rioboo, M. Marengo, and C. Tropea, “Time evolution of liquid drop impact onto solid, dry surfaces”, Experiments in Fluids, 33 (2002), 112-24.
    60. T. Mao, D. Kuhn, and H. Tran, “Spread and rebound of liquid droplets upon impact on flat surfaces”, AIChE Journal, 43 (2004), 2169-79.
    61. P. Attané, F. Girard, and V. Morin, “An energy balance approach of the dynamics of drop impact on a solid surface”, Physics of Fluids, 19 (2007), 012101.
    62. H. Fujimoto, Y. Shiotani, A. Y. Tong, T. Hama, and H. Takuda, “Three-dimensional numerical analysis of the deformation behavior of droplets impinging onto a solid substrate”, International Journal of Multiphase Flow, 33 (2007), 317-32.
    63. H. Park, W. W. Carr, J. Zhu, and J. F. Morris, “Single drop impaction on a solid surface”, AIChE Journal, 49 (2003), 2461-71.
    64. S. Vafaei, and M. Z. Podowski, “Analysis of the relationship between liquid droplet size and contact angle”, Advances in Colloid and Interface Science, 113 (2005), 133-46.
    65. C. Ukiwe, and D. Y. Kwok, “On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces”, Langmuir, 21 (2005), 666-73.
    66. D. C. D. Roux, and J. J. Cooper-White, “Dynamics of water spreading on a glass surface”, Journal of Colloid and Interface Science, 277 (2004), 424-36.
    67. D. Sivakumar, K. Katagiri, T. Sato, and H. Nishiyama, “Spreading behavior of an impacting drop on a structured rough surface”, Physics of Fluids, 17 (2005), 100608.
    68. Š. Šikalo, M. Marengo, C. Tropea, and E. N. Ganić, “Analysis of impact of droplets on horizontal surfaces”, Experimental Thermal and Fluid Science, 25 (2002), 503-10.
    69. D. Bartolo, C. Josserand, and D. Bonn, “Retraction dynamics of aqueous drops upon impact on non-wetting surfaces”, Journal of Fluid Mechanics, 545 (2005), 329-38.
    70. D. Bartolo, A. Boudaoud, G. Narcy, and D. Bonn, “Dynamics of non-Newtonian droplets”, Physical Review Letters, 99 (2007), 174502.
    71. D. C. Vadillo, A. Soucemarianadin, C. Delattre, and D. C. D. Roux, “Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces”, Physics of Fluids, 21 (2009), 122002.
    72. M. Pasandideh-Fard, Y. M. Qiao, S. Chandra, J. Mostaghimi, “Capillary effects during droplet impact on a solid surface”, Physics of Fluids, 8 (1996), 650.
    73. S. F. Mason, “A History of the Sciences”, New York: Collier books, (1962).
    74. S. L. C. Hsu, and R. T. Wu, “Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects”, Materials Letters, 61 (2007), 3719-22.
    75. N. Reis, C. Ainsley, and B. Derby, “Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors”, Journal of Applied Physics, 97 (2005), 094903-03-6.
    76. H. Y. Gan, X. Shan, T. Eriksson, B. K. Lok, and Y. C. Lam, “Reduction of droplet volume by controlling actuating waveforms in inkjet printing for micro-pattern formation”, Journal of Micromechanics and Microengineering, 19 (2009), 055010.
    77. A. U. Chen, and O. A. Basaran, “A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production”, Physics of Fluids, 14 (2002), L1.
    78. P. Shin, J. Sung, and M. H. Lee, “Control of droplet formation for low viscosity fluid by double waveforms applied to a piezoelectric inkjet nozzle”, Microelectronics Reliability, 51 (2011), 797-804.
    79. E. L. Kyser, L. F. Collins, and N. Herbert, “Design of an impulse ink jet”, Journal of Applied Photographic Engineering, 7 (1981), 73-79.
    80. K. S. Kwon, “Waveform design methods for piezo inkjet dispensers based on measured meniscus motion”, Journal of Microelectromechanical Systems, 18 (2009), 1118-25.
    81. H. Wijshoff, “Free surface flow and acousto-elastic interaction in piezo inkjet”, Proc. of NSTI Nanotechnology Conf. and Trade Show (2004), 215-18.
    82. H. Wijshoff, “The dynamics of the piezo inkjet printhead operation”, Physics Reports, 491 (2010), 77-177.
    83. Y. F. Liu, Y. F. Pai, M. H. Tsai, and W. S. Hwang, “Investigation of driving waveform and resonance pressure in piezoelectric inkjet printing”, Applied Physics A: Materials Science & Processing (2012), 1-7.
    84. J. B. Szczech, C. M. Megaridis, D. R. Gamota, and J. Zhang, “Fine-line conductor manufacturing using drop-on demand PZT printing technology”, IEEE Transactions Electronics Packaging Manufacturing, 25 (2002), 26-33.
    85. K. S. Kwon, “Experimental analysis of waveform effects on satellite and ligament behavior via in situ measurement of the drop-on-demand drop formation curve and the instantaneous jetting speed curve”, Journal of Micromechanics and Microengineering, 20 (2010), 115005.
    86. H. C. Wu, T. R. Shan, W. S. Hwang, and H. J. Lin, “Study of micro-droplet behavior for a piezoelectric inkjet printing device using a single pulse voltage pattern”, Materials Transactions., 45 (2004), 1794-801.
    87. T. Shimoda, K. Morii, S. Seki, and H. Kiguchi, “Inkjet printing of light-emitting polymer displays”, MRS bulletin-materials research society, 28 (2003), 821-28.
    88. B. Derby, and N. Reis, “'Inkjet printing of highly loaded particulate suspensions”, MRS bulletin-materials research society, 28 (2003), 815-18.
    89. D. Jang, D. Kim, and J. Moon, “Influence of fluid physical properties on ink-jet printability”, Langmuir, 25 (2009), 2629.
    90. S. Sakai, “Dynamics of piezoelectric inkjet printing systems“, Proc. of IS&T’s NIP16 International Conf. on Digital Printing Tech., 15 (2000)
    91. T. R. Tuladhar, and M. R. Mackley, “Filament stretching rheometry and break-up behaviour of low viscosity polymer solutions and inkjet fluids”, Journal of Non-Newtonian Fluid Mechanics, 148 (2008), 97-108.
    92. Y. F. Liu, W. S. Hwang, Y. F. Pai, and M. H. Tsai, “Low temperature fabricated conductive lines on flexible substrate by inkjet printing”, Microelectronics Reliability, 52 (2012), 391-97.
    93. A. Asai, M. Shioya, S. Hirasawa, and T. Okazaki, “Impact of an ink drop on paper”, The Journal of Imaging Science and Technology, 37 (1993), 205-07.
    94. V. Ravi, M. A. Jog, and R. M. Manglik, “Effects of interfacial and viscous properties of liquids on drop spread dynamics”, Proc. of 22nd Annual Conference on Liquid Atomization and Spray Systems, (2010), 16-19.
    95. M. Ikegawa, and H. Azuma, “Droplet behaviors on substrates in thin-film formation using ink-jet printing”, JSME International Journal Series B, 47 (2004), 490-96.
    96. P. C. Duineveld, “The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate”, Journal of Fluid Mechanics, 477 (2003), 175-200.
    97. K.A.M. Seerden, N. Reis, J.R.G. Evans, P.S. Grant, J.W. Halloran, and B. Derby, “Ink‐jet printing of wax‐based alumina suspensions”, Journal of the American Ceramic Society, 84 (2004), 2514-20.
    98. H.C. Wu, W.S. Hwang, and H.J. Lin, “Development of a Three-Dimensional Simulation System for Micro-Inkjet and Its Experimental Verification”, Materials Science and Engineering: A, 373 (2004), 268-78.
    99. B.J. de Gans, P.C. Duineveld, and U.S. Schubert, “Inkjet printing of polymers: state of the art and future developments”, Advanced Materials, 16 (2004), 203-13.
    100. Y. Son, C. Kim, D.H. Yang, and D.J. Ahn, “Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low Weber and Reynolds numbers”, Langmuir, 24 (2008), 2900-07.
    101. B.W. Jo, A. Lee, K.H. Ahn, and S.J. Lee, “Evaluation of jet performance in drop-on-demand (DOD) inkjet printing”, Korean Journal of Chemical Engineering, 26 (2009), 339-48.
    102. J. Perelaer, P.J. Smith, M.M.P. Wijnen, E. van den Bosch, R. Eckardt, P.H.J.M. Ketelaars, and U.S. Schubert, “Droplet tailoring using evaporative inkjet printing”, Macromolecular Chemistry and Physics, 210 (2009), 387-93.
    103. D.Y. Shin, P. Grassia, and B. Derby, “Numerical and experimental comparisons of mass transport rate in a piezoelectric drop-on-demand inkjet print head”, International journal of mechanical sciences, 46 (2004), 181-99.

    下載圖示 校內:2018-02-07公開
    校外:2018-02-07公開
    QR CODE