| 研究生: |
林琮宸 Lin, Cong-Chen |
|---|---|
| 論文名稱: |
純彎曲潛變負載下圓孔管之行為與失效 Response and Failure of Round-hole Tubes under Pure Bending Creep |
| 指導教授: |
潘文峰
Pan, Wen-Fung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 6061-T6鋁合金圓孔管 、純彎曲潛變 、外徑/壁厚比 、圓孔徑 、彎矩 、彎曲潛變 、橢圓化 |
| 外文關鍵詞: | round-hole 6061-T6 aluminum alloy tubes, pure bending creep, diameter-to-thickness ratios, round-hole diameters, moment, creep curvature, ovalization |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用彎管試驗機將不同外徑/壁厚比(30、40、50及60)以及不同圓孔直徑(2、4、6、8及10 mm)的6061-T6鋁合金圓孔管進行純彎曲潛變的實驗,並觀察潛變曲率、橢圓化與時間之間的相互關係,而純彎曲潛變的負載是指將圓孔管彎曲至某個固定彎矩後,維持該彎矩一段長時間。當純彎曲潛變實驗開始時,圓孔管的彎曲曲率會隨著時間先是會迅速增加,之後趨於平緩的增加直至失效損壞,至於純彎曲潛變負載也會使得橢圓化持續的增加,當橢圓化到達一臨界值時,圓孔管會發生失效損壞。
根據實驗純彎曲潛變的潛變曲率與時間的關係圖顯示,在相同的潛變彎曲力矩時,外徑/壁厚比越大或是圓孔直徑越大的圓孔管在純彎曲潛變負載下,潛變曲率增加的也就越快。最後,本文使用2014年Lee et al.【7】所提出描述純彎曲潛變負載下潛變曲率與時間的關係式,並根據實驗數據加入不同外徑/壁厚比及不同圓孔直徑的變數,則理論公式可以用來描述不同外徑/壁厚比及不同圓孔直徑的6061-T6鋁合金圓孔管在純彎曲潛變負載下的潛變曲率與時間關係,並與實驗結果相互比較後可發現,理論可以合理的描述實驗結果。
In this paper, the response of 6061-T6 aluminum alloy round-hole tubes with different diameter-to-thickness ratios (30、40、50、60) and different round-hole diameters (2、4、6、8 and 10 mm) under pure bending creep is studied. The relationship among the creep curvature, ovalization and time are observed. It can be seen that when the pure bending creep experiment starts, the curvature of the round-hole tube increases rapidly with time, subsequently, it increases gently until failure. The ovalization also increases, and the round-hole tube failure when the ovalization reaches a critical value.
According to the experimental result of the creep curvature-time relationship under pure bending creep, it is shown that under the same bending moment, the larger the diameter-to-thickness ratio or the round-hole diameter leads to faster increase of the creep curvature. Finally, the formulation proposed by Lee et al. in 2014 is modified to describe the relationship between creep curvature and time under pure bending creep. Based on the experimental data, material parameters related to diameter-to-thickness ratios and round-hole diameters are included. Therefore, the theoretical formula can be used to describe the relationship between creep curvature and time of round-hole 6061-T6 aluminum alloy tubes with different diameter-to-thickness ratios and different round-hole diameters under pure bending creep. Theoretical analysis is compared with the experimental finding, it is shown that the theoretical formulation can simulate the experimental results reasonably.
1. W. F. Pan and Y. S. Her, Viscoplastic collapse of thin-walled tubes under cyclic bending, Journal of Engineering Materials and Technology, Vol. 120, No. 4, pp. 287-290 (1998).
2. K. L. Lee, W. F. Pan and J. N. Kuo, The influence of the diameter-to-thickness ratio on the stability of circular tubes under cyclic bending, International Journal of Solids and Structures, Vol. 38, No. 14, pp. 2401-2413 (2001).
3. K. L. Lee and W. F. Pan, Pure bending creep of SUS304 stainless steel tubes, Steel and Composite Structures, Vol. 2, No. 6, pp. 461-474 (2002).
4. K. H. Chang and W. F. Pan, Buckling life estimation of circular tubes under cyclic bending, International Journal of Solids and Structures, Vol. 46, No. 2, pp. 254-270 (2009).
5. K. L. Lee, C. Y. Hung and W. F. Pan, Variation of ovalization for sharp-notched circular tubes under cyclic bending, Journal of Mechanics, Vol. 26, No. 3, pp. 403- 411 (2010).
6. K. L. Lee, C. M. Hsu and W. F. Pan, The influence of diameter-to-thickness ratios on the response and collapse of sharp-notched circular tubes under cyclic bending, Journal of Mechanics, Vol. 28, No. 3, pp. 461-468 (2012).
7. K. L. Lee, C. M. Hsu and W. F. Pan, Response of sharp-notched circular tubes under bending creep and relaxation, Mechanical Engineering Journal, Vol. 1, No. 2, pp. 1-14 (2014).
8. K. L. Lee, C. C. Chung and W. F. Pan, Growing and critical ovalization for sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending, Journal of Chinese Institute of Engineers, Vol. 39, No. 8, pp. 926-935 (2016).
9. K. L. Lee, K. H. Chang and W. F. Pan, Failure life estimation of sharp-notched circular tubes with different notch depths under cyclic bending, Structural Engineering & Mechanics, Vol. 60, No. 3, pp. 365-386 (2016).
10. K. L. Lee, K. H. Chang and W. F. Pan, Effect of notch depth and direction on stability of local sharp-notched circular tubes subjected to cyclic bending, International Journal of Structural Stability and Dynamics, Vol. 18, No. 7, 1850090 [23 pages] (2018).
校內:2025-08-23公開