簡易檢索 / 詳目顯示

研究生: 巫瑞旭
Reshi, Latif
論文名稱: 石斑魚虹膜病毒(GSIV)之絲氨酸蘇氨酸激酶基因誘導石斑魚細胞死亡之分子機制
The molecular cell death mechanism induced by grouper sea perch iridovirus (GSIV) serine theroine kinase gene in grouper fish cells
指導教授: 王浩文
Wang, Hao-Ven
共同指導教授: 洪健睿
Hong, Jiann-Ruey
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 149
外文關鍵詞: GSIV, apoptosis, necrosis, mitochondria, pathogenesis, host, iridoviridae, virus
相關次數: 點閱:63下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract.

    Aquaculture is one of the most important economic activities in Asia and is presently the fastest growing sector of food production in the world. Explosive increases in global fish farming have been accompanied by an increase in viral diseases. Viral infections are responsible for huge economic losses in fish farming, and control of these viral diseases in aquaculture remains a serious challenge. The prevention and treatment of viral infections are
    particularly challenging because viruses use the host cell machinery to replicate, and interrupting viral replication without damaging host cell structures or processes presents a puzzle. Thus, the development of antiviral vaccines or drugs requires an understanding of both the host immune system genetics and viral gene function.
    Apoptosis plays a central role in the normal development and homeostasis of multicellular organisms. The process of apoptosis is controlled by a range of cell signaling pathways that originate either from cells external environment or from within the cell itself.
    The cell’s fate to undergo apoptosis depends mainly on the dynamic balance between the Bcl-2 family sensor proteins, which both promote and inhibit apoptosis. In many (but not all) cases,these proteins appear to influence the activation of caspase family members (proteases), which
    perform the ‘‘execution’’ phase of apoptosis by cleaving a number of cellular proteins and bringing about the destruction of cellular structures. Apoptosis may be used by the host to limit the production of viruses or to disseminate them. However, viruses use the apoptosis process
    to produce sufficient virus progeny to facilitate virus release.
    The megalocytiviruses belonging to family iridoviridae infect a wide range of tropical marine and freshwater fish, including grouper, gourami, cichlid, red sea bream, angel
    fish, sea bass and lamp eye, causing similar diseases in each species. The forms of cell death evoked by iridoviruses are continually being disclosed, and they include typical apoptosis and non-apoptotic cell death. However, the signaling pathways involved in these processes remain largely unknown. In this study, i showed that GSIV encoded serine/threonine kinase gene induces apoptotic cell death via a p53-mediated upregulation of Bax which causes a loss of MMP. Therefore we first time reported that the tumor suppressor protein p53 is involved to propagate the signal to commit suicide in fish cells. This loss then mediates cell death signaling, which results in an activation of the caspase-mediated cell death pathway at the mid-to-late stages of viral replication. These findings may provide new insight into GSIV-induced pathogenesis.
    In 2nd part of my study, overexpression of Bcl-2 and Bcl-xL anti-apoptotic genes protect GF-1 cells from GSIV encoded serine/threonine kinase induced pro-apoptotic stimuli.In this study, i try to determine if these proteins could provide equal protection when challenged with a viral apoptotic gene. Bcl-2 and Bcl-xL overexpression inhibit Bax oligomerization and mitochondrial outer membrane permeabilization. Therefore we demonstrated that GSIV st-kinase induced cell death is prevented by the antiapoptotic Bcl-2 and Bcl-xL, which enhances host cell viability through blockage of mitochondrial disruption and caspase 9 and caspase 3 activation. These results indicate that Bcl-xL and Bcl-2 confer different ability to protect against GSIV serine/threonine kinase induced cell death which appears to be dependent on the molecular mechanism.

    Abstract……………………………………………………………………………………..i-ii Chapter 1 .................................................................................................................................. 1 1.1 Introduction .......................................................................................................................... 2 1.2 Apoptosis ............................................................................................................................. 2 1.3 Necrotic Cell Death.............................................................................................................. 4 1.4 Apoptosis in Virus Infected Cells ........................................................................................ 4 1.5 ROS friend and foe of cells .................................................................................................. 6 1.5.1 Mitochondria: Source and target of ROS.......................................................................... 8 1.5.2 ROS in Endoplasmic Reticulum. ...................................................................................... 9 1.6 Iridoviruses .......................................................................................................................... 9 1.6.1 Different molecular cell death mechanisms induced by Iridoviruses .............................10 1.6.1.1 Largemouth bass virus ................................................................................................. 10 1.6.1.2 Singapore Grouper iridovirus ...................................................................................... 12 1.6.2 Megalocytivirus strain .................................................................................................... 15 1.6.2.1 Rock bream iridovirus.................................................................................................. 15 1.6.2.2 Grouper sea perch Iridovirus induced cell death. ........................................................ 17 1.7 Conclusion: ........................................................................................................................ 27 1.8 References. ......................................................................................................................... 30 Chapter 2 ................................................................................................................................ 42 GSIV serine/threonine kinase induces apoptotic cell death via p53 and pro-apoptotic gene Bax up regulation in fish cells..................................................................................................42 2.1 Abstract .............................................................................................................................. 43 2.2 Introduction: ....................................................................................................................... 45 2.3 Material and methods. ........................................................................................................ 48 v 2.3.1 Chemicals, drugs and antibodies used: ........................................................................... 48 2.3.2 Drug treatment. ............................................................................................................... 48 2.3.3 Cell culture: ..................................................................................................................... 48 2.3.4 Viruses ............................................................................................................................ 48 2.3.5 Virus Infection ................................................................................................................ 49 2.3.6 RNA isolation and RT-PCR Cloning:............................................................................. 49 2.3.7 Sequence analysis of GSIV Kinase ................................................................................. 50 2.3.8 EGFP ST kinase fusion gene construction...................................................................... 50 2.3.9 Transition transfection Assay ......................................................................................... 50 2.3.10 Analysis of apoptosis .................................................................................................... 51 2.3.10.1 TUNEL assay ............................................................................................................. 51 2.3.10.2 Hoechst 33258 nuclear staining .............................................................................. 52 2.3.11 Protein extraction and western blotting analysis .......................................................... 53 2.3.12 Evaluation of mitochondrial membrane potential (MMP) with a Lipophilic cationic dye ............................................................................................................................................ 54 2.3.13 Cell counts and statical analysis ................................................................................... 54 2.4 Results. .............................................................................................................................. 55 2.4.1 GSIV ST kinase gene expression profile and cloning .................................................... 55 2.4.2 Location of Full-Length Kinase Protein in GF1 Cells. ................................................... 55 2.4.3 Overexpression of GSIV ST kinase induces apoptosis, or cell death .............................56 2.4.3.1 Typical apoptosis on the basis of morphological changes. .......................................... 56 2.4.3.2 Expression of GSIV Kinase Induces Typical Apoptosis Phenomena Such as Nuclear / chromatin condensation ........................................................................................................... 57 2.4.3.3 Expression of GSIV Kinase Induces Typical Apoptosis Phenomena Such as DNA Fragmentation .......................................................................................................................... 57 2.4.4 Overexpression of GSIV ST kinase upregulate p53, Bax and down regulate Bcl-2 protein in GF-1 cells. ............................................................................................................... 57 2.4.5 ST kinase overexpression can induce MMP loss in GF-1 cells ...................................... 58 vi 2.4.6 ST kinase overexpression can activate caspases cascade (-9 and -3) ............................. 59 2.4.7 P53 activity inhibitor, pifithrin-ά can reduce the ST kinase-induced cell death............. 59 2.5 Discussion .......................................................................................................................... 61 2.6 References .......................................................................................................................... 93 Chapter 3. ............................................................................................................................... 98 Anti-apoptotic genes Bcl-2 and Bcl-xL overexpression can block iridovirus serine/threonine kinase-induced Bax/mitochondria-mediated cell death in GF-1 cells ..................................... 98 3.1 Abstract .............................................................................................................................. 99 3.2 Introduction ...................................................................................................................... 100 3.3. Material and Methods. .................................................................................................... 103 3.3.1 Chemicals and antibodies ............................................................................................. 103 3.3.2. Cell culture ................................................................................................................... 103 3.3.3. Selection of stable Bcl-xL- and Bcl-2-overexpressing cell lines ................................. 103 3.3.4 Transient transfection assay .......................................................................................... 104 3.3.5. TUNEL assay ............................................................................................................... 104 3.3.6 Cell counts .................................................................................................................... 104 3.3.7 Evaluation of mitochondrial membrane potential using a lipophilic cationic dye ....... 105 3.3.8 Cell viability.................................................................................................................. 105 3.3.9 Cell fractionation .......................................................................................................... 105 3.3.10 Protein extraction and Western blotting analysis........................................................ 106 3.4 Results .............................................................................................................................. 107 3.4.1 Identification of the EGFP-Bcl-xL and EGFP-Bcl-2 gene expression profiles in GF-1 cells by western blotting and fluorescence microscopy ......................................................... 107 3.4.2 Overexpression of EGFP-Bcl-xL and EGFP-Bcl-2 prevented GSIV ST kinase-induced apoptosis and enhanced cell viability. ................................................................................... 107 3.4.3 Anti-apoptotic proteins Bcl-xL and Bcl-2 blocked GSIV ST kinase-induced MMP loss ................................................................................................................................................ 108 vii 3.4.4 Bcl-2 and Bcl-xL reduced the extent of the pro-apoptotic protein Bax translocation to mitochondria and the amount of cytochrome c release. ........................................................ 109 3.4.5 Downstream events of GSIV-ST kinase protein expression induced caspase-9 and -3 activations in GF-1 cells ........................................................................................................ 109 3.5 Discussion ........................................................................................................................ 111 3.6 References: ....................................................................................................................... 134 Chapter 4. ............................................................................................................................. 139 4.1 Conclusion: ...................................................................................................................... 140 4.2 Future perspective ............................................................................................................ 140 4.3 siRNA approach in virus diseases.................................................................................... 141 4.4 Bcl-2 family overexpression ............................................................................................ 143 4.5 Antioxidant defense system of host to fight viral invasion.............................................. 144 4.6 References: ....................................................................................................................... 145 List of peer reviewed Publications...................................................................................... 148 A. Research Papers: ............................................................................................................... 148 B. Posters: .............................................................................................................................. 148 C. Review Papers: .................................................................................................................. 148 D. Book Chapters ................................................................................................................... 149

    1. Biacchesi S. The reverse genetics applied to fish RNA viruses. Vet Res 2011; 42(1): 12.
    2. Murray AG, Peeler EJ. A framework for understanding the potential for emerging diseases in aquaculture. Prev Vet Med 2005; 67: 223–235.
    3. Daszak P, Cunningham AA, Hyatt AD. Emerging infectious diseases of wildlife threats to biodiversity and human health. Science 2000; 287: 443–449.
    4. Walker PJ, Winton Jr. Emerging viral diseases of fish and shrimp. Vet Res 2010; 41: 51.
    5. Collins JP, Crump ML. Extinction in our times: global amphibian decline. New York: Oxford University Press 2009.
    6. Chinchar VG, Hyatt A, Miyazaki T, Williams T. Family Iridoviridae: poor viral relations no longer. Curr Top Microb Immunol 2009; 328: 123–170.
    7. Une Y, Sakuma A, Matsueda H, Nakai K, Murakami M. Ranavirus outbreak in North American bullfrogs (Rana catesbeiana), Japan, 2008. Emerg Infect Dis 2009; 15: 1146–1147.
    8. Hyatt AD, Gould AR, Zupanovic Z, Cunningham AA, Hengstberger S, Whittington RJ, et al. Comparative studies of piscine and amphibian iridoviruses. Arch Virol 2000; 145: 301–331.
    9. Kik M, Martel A, Spitzen-van der Sluijs A, Pasmans F, Wohlseind P, Grönea A, Rijksa JM. Ranavirus-associated mass mortality in wild amphibians. The Netherlands 2010: A first report. Vet J 2011; 190: 284–286.
    10. Ameisen JC. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 2002; 9: 367–393.
    11. Munz C. Viral evasion of autophagy. Cell Host Microbe 2007; 1: 9–11.
    12. Benedict CA, Norris PS, Ware CF. To kill or be killed: viral evasion of apoptosis. Nat Immunol 2002; 3: 1013–1018.
    13. Vanlandschoot P, Leroux-Roels G. Viral apoptotic mimicry: an immune evasion strategy developed by the hepatitis B virus? Trends Immunol 2003; 24: 144–147.
    14. Deretic V, Levine B. Autophagy, immunity, and microbial adaptations. Cell Host Microbe 2009; 5: 527–549.
    15. Orvedahl A, Alexander D, Tallóczy Z, Sun Q, Wei Y, Zhang W, et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 2007; 1: 23–35.
    16. Kumar S. Caspase function in programmed cell death. Cell Death Differ 2006; 14: 32–43.
    17. Liu J, Chen I, Kwang J. Characterization of a previously unidentified viral protein in porcine circovirus type 2-infected cells and its role in virus-induced apoptosis. J Virol 2005; 79: 8262–8274.
    18. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998; 281:1305–8.
    19. Allen DL, Linderman J, Roy RR, Bigbee AJ, Grindeland RE, Mukku V, et al. Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hind limb unweighting. Am J Physiol Cell Physiol 1997; 273: C579–C587.
    20. Mao H, Tu W, Qin G, Law HK, Sia SF, Chan PL, et al. Influenza virus directly infects human natural killer cells and induces cell apoptosis. J Virol 2009; 83: 9215–9222.
    21. Pearce AF, Lyles DS. Vesicular stomatitis virus induces apoptosis primarily through Bak rather than Bax by inactivating Mcl-1 and Bcl-xL. J Virol 2009; 83: 9102–9112.
    22. Huang YH, Huang XH, Gui JF, Zhang QY. Mitochondrion-mediated apoptosis induced by Rana grylio virus infection in fish cells. Apoptosis 2007; 12: 1569–1577.
    23. Huang XH, Huang YH, Sun JJ, Han X, Qin QW. Characterization of two grouper Epinephelus akaara cell lines: application to studies of Singapore grouper iridovirus (SGIV) propagation and virus-host interaction. Aquaculture 2009; 292: 172–179.
    24. Seth P, Diaz F, Tao-Cheng JH, Major EO. JC virus induces nonapoptotic cell death of human central nervous system progenitor cell-derived astrocytes. J Virol 2004; 78: 4884–4891.
    25. Sir D, Chen WL, Choi J, Wakita T, Yen TS, Ou JH. Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 2008; 48: 1054–1061.
    26. Wong J, Zhang J, Si X, Gao G, Mao I, McManus BM, et al. Autophagosome supports coxsackievirus B3 replication in host cells. J Virol 2008; 82: 9143–9153.
    27. Lee YR, Lei HY, Liu MT, Wang JR, Chen SH, Jiang-Shieh YF, et al. Autophagic machinery activated by dengue virus enhances virus replication. Virology 2008; 374: 240–248.
    28. Orvedahl A, Levine B. Eating the enemy within: autophagy in infectious diseases. Cell Death Differ 2009; 16: 57–69.
    29. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–331.
    30. Rao L, White E. Bcl-2 and the ICE family of apoptotic regulators: making a connection. Curr Opin Genet Dev 1997; 7: 52–58.
    31. Clem RJ, Duckett CS. The IAP genes: unique arbitrators of cell death. Trends Cell Biol 1997; 7: 337–339.
    32. Nagata S. Apoptosis by death factor. Cell 1997; 88: 355–365.
    33. White E. Life, death, and the pursuit of apoptosis. Genes Dev. 1996; 10: 1–15.
    34. Valyi-Nagy T, Dermody T. Role of oxidative damage in the pathogenesis of viral infections of the nervous system. Histol Histopathol 2005; 20: 957–967.
    35. Li L, Sevinsky JR, Rowland MD, Bundy JL, Stephenson JL, Sherry B. Proteomic analysis reveals virus-specific Hsp25 modulation in cardiac myocytes. J Proteome Res 2010; 9: 2460–2471.
    36. Edens F, Read-Snyder J, Somody R, Surai P, Taylor-Pickard J. Selenium modifies avian reovirus pathogenicity related to malabsorption syndrome. Curr Adv Selenium Res Appl 2008; 133–172.
    37. Reshi ML, Su YC, Hong JR. RNA viruses: ROS-mediated cell death. Int J Cell Biol 2014; 467452.
    38. Lin PY, Liu HJ, Chang CD, Chang CI, Hsu JL, Liao MH, Lee JW, Shih WL. Avian reovirus S1133-induced DNA damage signaling and subsequent apoptosis in cultured cells and in chickens. Arch Virol 2011; 156: 1917–1929.
    39. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998 no. 5381: 1305-1308
    40. Itoh N, Yonehara S, Ishii, A, Yonehara M, Mizushima SI, Sameshima M, Nagata S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 1991; 66(2): 233-243.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE