| 研究生: |
劉恒惠 Liu, Heng-Hui |
|---|---|
| 論文名稱: |
微型生化反應槽之設計製作及測試 Design, Fabrication and Characterization of Micro Bio-reactors |
| 指導教授: |
李國賓
Lee, Gwo-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 生化反應槽 、蛋白質晶片 、微機電 、微製造 |
| 外文關鍵詞: | Microfabrication, Bio-reactors, Protein chips, MEMS, Trypsin beds |
| 相關次數: | 點閱:93 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對微型生化反應槽,從相關理論、設計、製程、封裝、測試以及相關模組元件做有系統的探討。其中包括了玻璃材質的微型生化反應槽與十字電泳分離管道的整合晶片以及使用PDMS做為材質並具有溫度控制功能的微型生化反應槽兩大主題。最後並利用胰蛋白脢消化反應做為評估微型反應槽效能表現的基準。
在玻璃微型反應槽的設計上,本研究利用微型水壩結構將表面固定有胰蛋白脢的微粒集中在反應槽中,以達到線上消化反應(On-line digestion)的功能,並且提出單一光罩快速製作微型水壩結構的方式,此舉不但能簡化製程步驟還可提高製作良率,並節省研究成本。本研究並針對此一整合型晶片進行一系列的測試以評估其適用性及微型水壩結構之可靠度。
在具有溫度控制元件的PDMS微型反應槽的研究中,本文利用鉑金屬溫度變化與電阻變化的線性關係製作微型溫度感測器,此外並設計適當電阻值之鉑電阻絲做為微型加熱器,再利用資料擷取系統以及脈波寬度調變的方式以改變加熱功率的輸出,進行控制反應槽中的溫度。最後本研究並利用紅外線熱相儀針對微型反應槽內溫度的分佈情形做一系列的探討。在胰蛋白脢消化反應的測試上,本研究進行了溫度控制對於消化反應的影響,微量樣品的檢測,以及連續注射樣品時是否會發生污染這三個方向的研究。
總而言之,本研究利用一些快速可靠的微機電製程技術製作具有生化反應槽功能之微流體元件,並且以實驗方式證明所製作的微型生化反應槽可以成功地處理微量檢測樣品並將之應用在胰蛋白脢消反應。
The present paper reports design, fabrication, and characterization of micro bio-reactors using MEMS technologies. Microchannels on soda-lime glass and PDMS substrates are fabricated and integrated with a temperature control module composed of micro temperature sensors and heaters. Principles, designs, fabrication process, and characterization of these microfluidic devices are demonstrated. At last, trypsin digestion of several proteins is used to characterize the performance of those reactors.
First, a fast and simple fabrication method to make micro-dam structures on glass substrates is developed. Only one mask is required to form channels with different depths, resulting in a “dam”. Beads immobilized with specific enzymes can be constrained in this specific region such that on-line digestion can be performed in this chip. After protein samples flow through these trypsin beds constrained by the micro dam structures, they can be digested into peptides. The performance of the enzyme digestion has been confirmed by mass spectrometry.
Alternatively, PDMS micro bio-reactors with temperature control modules are demonstrated. Platinum is used as a material for temperature sensors and heaters as well, simplifying the fabrication process for temperature control modules. Pulse width modulation is used to control the heating power of the micro heaters to maintain the required temperature for trypsin digestion. Temperature distributions of the bio-reactors are measured using an infrared thermal imager. At last, the performance of this micro bio-reactor is evaluated by performing a series of bio-reactions.
In summary, this paper demonstrates a simple and reliable process to fabricate bio-reactors integrated with microfluidic devices. Characterization of these bio-reactors has been performed by measuring temperature distribution executing bio-reactions. Experimental data show that the miniaturized device has several advantages over their large-scale counterparts, including temperature uniformity, less sample and reagent consumption, power consumption, less dead volume and portability. The bio-reactors could be promising while applied for micro total analysis systems.
1. http://www.affymetrix.com
2. 李國賓, “下一波之生物晶片-微流體生醫晶片之應用及研發”, 《科學發展》月刊, 2003, in press.
3. A. T. Woolley, D. Hadley, P. Landre, A. J. deMello, R. A. Mathies, and M. A. Northrup,“Functional Integration of PCR Amplification and Capillary Electrophoresis in a Microfabricated DNA Analysis Device,”Anal. Chem., Vol. 68, pp. 4081-4086, 1996.
4. A. I. K. Lao, T. M. H. Lee, I. M. Hsing, N. Y. Ip, “Precise temperature control of microfluidic chamber for gas and liquid phase reactions,”Sensors and Actuators, Vol. 84, pp. 11–17, 2000.
5. R. D. Oleschuk, L. L. Shultz-Lockyear, Y. Ning, and D. J. Harrison,“Trapping of Bead-Based Reagents within Microfluidic Systems On-Chip Solid-phase Extraction and Electrochromatography,” Anal. Chem., Vol. 72, pp. 585-590, 2000.
6. 行政院國家科學委員會精密儀器發展中心,” 質譜分析術專輯”
7. M. A. Northrup, M. T. Ching, R. M. White and R. T. Wltson, “DNA amplification with a microfabricated reaction chamber,” Proceedings of Transducers ’93, Chicago, USA, pp. 924-926, 1993.
8. E. T. Lagally and R. A. Mathies, ”Integrated PCR-CE system for DNA analysis to the single molecule limit,” Micro Total Analysis Systems 2001, pp. 117-118, 2001.
9. E. T. Lagally, P. C. Simpson and R. A. Mathies, “Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system,” Sensors and Actuators B: Chemical, pp. 138-146, 2000.
10. C. H. Lin, G. B. Lee, Y. H. Lin and G. L. Chang, " A Fast-Prototyping Process for Fabrication of Microfluidic Systems on Soda-Lime Glass," Journal of Micromechanics and Microengineering, Vol. 11, pp. 726-732, 2001.
11. 陳邦維、李國賓、林中源、陳淑慧、宋旺洲、廖寶琦, "微流體晶片連結質譜儀偵測在蛋白質分析上的應用", 微系統科技協會季刊第五期, August 20, pp. 44-51, 2001.
12. C. C. Lin, G. B. Lee, S. H. Chen,“Automation for Continuous Analysis on Microchip Electrophoresis using Flow-Through Sampling,”Electrophoresis, Vol. 23, pp. 3550-3557, 2002.
13. A. T. Woolley and R. A. Mathies, ”Ultra-High-Speed DNA fragment separations using microfabricated capillary array electrophoresis chips,” Proc. Natl. Acad. Sci. 91, pp. 11348-52.
14. M. Stjernström and J. Roeraade, “Method for fabrication of microfluidic system in glass, “ J. Micromech. Microeng., Vol. 8, pp. 33-38.
15. F. Delahaye, L. Montagne, G. Palavit, J. C. Touray and P. Baillif, “Acid dissolution of sodium-calcium metaphosphate glasses,” J. Non-Cryst Solids. Vol. 242, pp. 25-32
16. H. Nakanishi, T. Nishimoto, R. Nakamura, A. Yotsumoto, T. Yoshida and S. Shoji, “Studies on SiO2-SiO2 bonding with hydrofluoric acid: Room temperature and low stress bonding technique for MEMS, “ Sensors Actuators A , Vol. 79, pp. 237-244
17. T. Ito, K. Sobue, S. Ohya, “Water glass bonding for Micro Total Analysis System,” Sensors Actuators B, Vol. 81, pp. 187-195, 2002.
18. C. H. Chiou, G. B. Lee, H. T. Hsu, P. W. Chen, P. C. Liao, “Micro devices integrated with microchannels and electrospray,” Sensors Actuators B, Vol. 86, pp. 280-286, 2002.