簡易檢索 / 詳目顯示

研究生: 陳建昕
Chen, Chien-Hsin
論文名稱: 在光載微波通訊系統中運用半導體雷射注入非鎖住動態進行光雙單調制邊帶轉換以及光電微波放大
Optical DSB-to-SSB Conversion and Photonic Microwave Amplification Using Unlocking Dynamics of Semiconductor Lasers for Radio-over-Fiber Links
指導教授: 黃勝廣
Hwang, Sheng-Kwang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 70
中文關鍵詞: 半導體雷射非線性動態光雙單調制邊帶轉換光微波放大。
外文關鍵詞: semiconductor laser, nonlinear dynamics, DSB-to-SSB conversion, photonic microwave amplification.
相關次數: 點閱:101下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要研究非鎖住動態特性,並利用此動態特性解決光載微波通訊系統中會產生的能量消逝效應以及微波能量過小的問題。在此篇研究指出非鎖住動態具有自我振盪頻率,並且可以藉由調整注入條件得到不同的振盪頻率,範圍從10GHz到100GHz。除此之外,非鎖住動態更具有高邊帶強度比以及高調制深度的特性。利用這兩種特性,在不減少原本光雙調制邊帶能量的條件下,達到光雙單調制邊帶轉換,進而解決能量消逝效應以及微波能量過小的問題。本篇論文深入了解其各個物理量隨著調制前後以及注入條件改變的變化。而利用非鎖住動態進行光雙單調制邊帶轉換,此系統具有很強的可調性,可藉由改變注入條件調整其振盪頻率、調制深度以及邊帶強度比。此系統也可以適應因為儀器系統本身的不穩定性,稱之為自適應性。除此之外,因為本篇論文所使用的機制是藉由將單一邊帶放大而非抑制,因此其微波強度會因此而放大。

    For radio-over-fiber links, direct modulation and external modulation are commonly adopted to generate photonic microwaves. These low-efficiency modulation approaches typically generate optical double-sideband modulation signals with low optical modulation depth. On one hand, the optical double-sideband modulation signals lead to significant microwave power fading over fiber distribution because of a chromatic dispersion in optical fibers. To mitigate such unwanted effect, optical single-sideband modulation signals are preferred. On the other hand, the low optical modulation depth may limit microwave power after photodetection, and accordingly decreases detection sensitivity and transmission distance. This thesis investigates unlocking dynamics of semiconductor lasers. Because of a self-sustained microwave oscillation of the unlocking dynamics, semiconductor lasers operated at the unlocking dynamics generate optical single-sideband modulation signals with high optical modulation depth, up to 100%. In addition, the microwave oscillation frequency can be tuned from 10 GHz to 100 GHz. In this thesis, we apply the characteristics of unlocking dynamics to process the optical double-sideband modulation signals. As will be shown in the following sections, optical double-sideband modulation to optical single-sideband modulation conversion and photonic microwave amplification through optical modulation depth enhancement are simultaneously achieved.

    摘要 I ABSTRACT II 致謝 XI 圖目錄 XIV 第一章 前言 1 1.1研究背景 1 1.2研究動機 4 1.2.1 能量消逝效應(power fading effect) 5 1.2.2微波功率放大 15 1.3半導體雷射與非線性動態 18 1.4論文架構 20 第二章 光注入半導體系統 21 2.1非線性機制以及半導體雷射理論模型 21 2.2光注入半導體雷射 22 2.2.1光注入半導體雷射動態原理 22 2.2.2光注入半導體模擬模型 23 2.2.3動態地圖 25 2.3非鎖住動態(unlocking dynamic) 30 第三章 光雙調制邊帶轉換光單調制邊帶 37 3.1利用非鎖住動態進行光雙單調制邊轉換之概念 37 3.2系統架構以及模擬模型 39 3.3模擬結果與討論 40 3.4章特性分析 46 3.4.1注入條件對於各物理量影響 46 3.4.2不相等的調制頻率以及調制深度改變 52 3.5 應用分析 56 3.5.1 微波頻率可調性(Tunability) 56 3.5.2 自適應性(Adaptability) 56 第四章 微波功率放大 61 4.1模擬結果與討論 61 4.2微波功率放大 63 第五章 結論 65 參考文獻 67

    [1] C. Liu, J. Wang, L. Cheng, M. Zhu, G. K. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks, ” J. Lightwave. Technol., vol. 32, no. 20, pp. 3452-3460, 2014.
    [2] C. Lim, A. Nirmalathas, and D. Novak, “Techniques for multichannel data transmission using a multisection laser in millimeter-wave fiber-radio systems,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 7, pp. 1351–1357, 1999.
    [3] A.Ng’oma, D. Fortusini, D. Parekh, W. J. Yang, M. Sauer, S.Benjaminh, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Performance of a multi-Gb/s 60 GHz radio over fiber system employing a directly modulated optically injection-locked VCSEL,” J. Lightwave Technol., vol. 28, no. 16, pp. 2436–2444, 2010.
    [4] C. C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron., vol. 48, no. 4, pp. 490–499, 2012.
    [5] M. Zhu, L. Zhang, S. H. Fan, C. Su, G. Gu, and G. K. Chang, “Efficient delivery of integrated wired and wireless services in UDWDM-RoF-PON coherent access network,” IEEE Photon. Technol. Lett., vol.24, no. 13, pp. 1127–1129, 2012.
    [6] B. Zhu, S. Pan, D. Zhu, and J. Yao, “Wavelength reuse in a bidirectional radio-over-fiber link based on cross-gain and cross-polarization modulation in a semiconductor optical amplifier,” Opt. Lett., vol. 38, no. 18, pp. 3496–3498, 2013.
    [7] C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 8, pp. 1375–1383, 1997.
    [8] C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28, pp. 390–405, 2010.
    [9] S. K. Hwang, S. C. Chan, S. C. Hsieh, and C. Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun., vol. 284, pp. 3581–3589 , 2011.
    [10] Z. Li, H. Chi, X. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett., vol. 23, no. 9, pp. 558-560, 2011.
    [11] X. Y. Wang, M. Hanawa, K. Nakamura, K. Takano, K. Nakagawa, “Sideband Suppression Characteristics of Optical SSB Generation Filter with Sampled FBG Based 4-taps Optical Hilbert Transformer,” Proc. APCC 2009, pp. 622-625, 2009.
    [12] G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech., vol. 45, no.8, pp. 1410–1415, 1997.
    [13] W. Zhang, R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett., vol. 23, pp. 1775-1777, 2011.
    [14] M. J. LaGasse, W. Charczenko, M. C. Hamilton, S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links, ” Electron. Lett., vol. 30, no. 25, pp. 2157-2158, 1994.
    [15] R. D. Esman, K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction, ” IEEE Photon. Technol. Lett., vol. 7, no. 2, pp. 218-220, 1995.
    [16] S. Xiao and A. M. Weiner, “Optical carrier-suppressed single sideband (O-CS-SSB) modulation using a hyperfine blocking filter based on a virtually imaged phased-array (VIPA),” IEEE Photon. Technol. Lett., vol. 17, no. 7, pp. 1522–1524, 2005.
    [17] D. S. Glassner, M. Y. Frankel, and R. D. Esman, “Reduced loss microwave fiber optic links by intracavity modulation and carrier suppression,” IEEE Microwave Guided Wave Lett., vol. 7, no. 3, pp. 57–59, 1997.
    [18] C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 5, pp.2181–2187, 2006.
    [19] M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 190-192, Jan. 2005.
    [20] K. J. Williams, R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett., vol. 30, no. 23, pp. 1965-1966, 1994.
    [21] S. Tonda-Goldstein, D. Dolfi, J. P. Huignard, G. Charlet, J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett., vol. 36, no. 11, pp. 944-946, 2000.
    [22] A. Loayssa, D. Benito, and M. J. Garde, “Optical carrier-suppression technique with a brillouin-erbium fiber laser,” Opt.Lett., vol. 25, no. 4, pp.1 97–199, 2000.
    [23] J. R. Tredicce, F. T. Arecchi, G. L. Lippi, and G. P. Puccionis, “Instabilities in lasers with an injected signal,” J. Opt. Soc. Amer. B, vol. 2, no.1, pp. 173–183, 1985.
    [24] . B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt., vol. 9, no.5, pp. 765–784,1997.
    [25] S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun., vol. 183, no. 1-4, pp. 195–205, 2000.
    [26] T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun., vol. 215, no. 1-3, pp.135–151, 2003.
    [27] R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron., vol. 16, no. 3, pp. 347–355, 1980.
    [28] K. Otsuka and J. L. Chern, “High-speed pico second pulse generation in semiconductor lasers within coherent optical feedback,” Opt. Lett., vol. 16, no. 22, pp. 1759–1761, 1991.
    [29] G. H. M. Tartwijk, D. Lensto, “Semiconductor laser with optical injection and feedback”, QuantumSemi class. Opt., vol. 7, pp. 87-143, 1995.
    [30] S. Tang and J. M. Liu, “Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedbac,” IEEE J. Quantum Electron., vol. 37, no. 3, pp. 329–336, 2001.
    [31] F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback,” IEEE J. Quantum Electron., vol. 39, no. 4, pp. 562– 568, 2003.
    [32] G. Q. Xia, S. C. Chan, and J. M. Liu, “Multistability in a semiconductor laser with optoelectronic feedback,” Opt.Express., vol. 15, no. 2, pp. 572–576, 2007.
    [33] T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 9, no. 10, pp. 1322–1324, 1997.
    [34] S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-μm semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett., Vol. 16, 972–974, 2004.
    [35] Liu, J. M., et al. “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett., vol. 9, pp 1325-1327, 1997.
    [36] Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett., vol. 38, no. 9, pp. 1482-1484, 2013.
    [37] Y. H. Hung and S. K. Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett., vol. 38, no. 17, pp. 3355-3358, 2013.
    [38] C S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber am-to-fm upconversion using an optically injected semiconductor laser,” Opt. Lett., vol. 31, no. 15, pp. 2254– 2256, 2006.
    [39] S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron., vol. 41, no. 9, pp. 1142–1147, 2005.
    [40] J. M. Liu, H. F. Chen, S. Tang, “Synchronized chaotic optical communications at high bit rates." IEEE J. Quantum Electron., vol. 38, pp. 1184-1196, 2002.
    [41] F. Y. Lin and J. M. Liu, “Diverse waveform generation using semiconductor lasers for radar and microwave applications,” IEEE J. Quantum Electron., vol. 40, no.6, pp.682– 689, 2004.
    [42] W. T. Wu, Y. H. Liao, and F. Y. Lin, “Noise suppressions in synchronized chaos lidars,” Opt.Express, vol. 18, no. 25, pp. 26155–26162 ,2010.
    [43] C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express, vol. 23, no. 3, pp.2308–2319, 2013.
    [44] T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron., vol. 32, no. 8, pp. 1456–1468, 1996.
    [45] S. C. Chan, S. K. Hwang, J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express, vol. 15, no. 22, pp. 14921-14935, 2007.
    [46] S. K. Hwang, J. M. Liu, "Dynamical characteristics of an optically injected semiconductor laser", Opt. Commun., vol. 183, no. 1‖, pp. 195-205, 2000.
    [47] V. Kovanis, A. Gavrielides, T. B. Simpson, and J. M. Liu, “Instabilities and chaos in optically injected semiconductor lasers,” Appl. Phys. Lett., vol. 67, pp. 2780-2782, 1995.
    [48] S. K. Hwang, J. M. Liu, "Attractors and basins of the locking–unlocking bistability in a semiconductor laser subject to optical injection", Opt. Commun., vol. 169, no. 16, pp. 167-176, 1999.

    下載圖示 校內:2022-09-01公開
    校外:2022-09-01公開
    QR CODE