| 研究生: |
廖翊君 Liao, Yi-Jun |
|---|---|
| 論文名稱: |
研究與大豆形態性狀相關的簡單序列重複(SSR)標記 Exploration of simple sequence repeat (SSR) markers associated with soybean morphological traits |
| 指導教授: |
蔡文杰
Tsai, Wen-Chieh 大林祝 Ohayashi, Iwai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 大豆 、性狀 、SSR 、PCR 、毛細管電泳 、UPGMA 、關聯分析 |
| 外文關鍵詞: | soybean, traits, SSR, PCR, capillary electrophoresis, UPGMA, correlation analysis |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用50個SSR標誌和來自不同區域的23個大豆品種,初步探討大豆性狀與SSR標誌之間的相關性。從SSR標記獲得的條帶進行統計分析,並應用聚類生成之樹狀圖以區分大豆品種之間的基因關係。結果顯示,來自哥倫比亞的大豆品種和台南5號親緣關係接近。另一方面,對28個栽培試驗中大豆性狀的調查數據進行主成分分析(PCA)。結果表明,在抗病和感病條件下,23個品種在9個連續性狀的調查結果中沒有顯著差異。進行統計分析篩選具有與相同性狀相關的SSR標記的條帶,並評估分子標記與植物性狀之間的相關性。研究表明,與性狀更高相關性的SSR標誌主要集中在大豆的第12、13、14和16條染色體上,與先前有關大豆生長、發育和產量的QTL報告一致。研究結果強調了一個關鍵點,即僅從單一性狀或SSR標誌生成的條帶不能有效區分大豆品種。因此,未來收穫來自不同地區的更多大豆基因種原,數據分析將整合來自栽培試驗的農藝性狀和SSR標記,進行比對統計。這種方法旨在掌握大豆性狀的基因因素,對於推動大豆育種和提高產量至關重要。
This study involved 50 SSR markers and 23 soybean cultivars, encompassing different cultivars and breeding types from various regions, to preliminarily explore the correlation between soybean traits and SSR markers. Statistical analysis of the bands obtained from SSR markers and the application of cluster analysis was used to generate a dendrogram to distinguish the genetic relationships among soybean cultivars. The results suggest a close genetic relationship between soybean cultivars from Colombia and Tainan No. 5. In addition, principal component analysis (PCA) was conducted on the survey data of soybean traits from 28 cultivation experiments. The results indicate no significant differences in the investigation outcomes of 9 consecutive traits among 23 cultivars under disease-resistant and susceptible conditions. Statistical analysis was performed to identify SSR markers with bands correlated to the same traits and further assess the correlation between molecular markers and plant traits. The study demonstrated that SSR markers with higher correlation to traits were mainly concentrated on soybean chromosomes 12, 13, 14, and 16, consistent with QTL reported in previous studies on soybean growth, development, and yield. The research findings emphasize a crucial point that bands generated solely from single traits or SSR markers cannot effectively distinguish soybean cultivars. Therefore, in the future, as more soybean germplasms from different regions will be available, data analysis will integrate agronomic traits from cultivation experiments with SSR markers for comparative analysis.
Blair R. Nutrition and Feeding of Organic Poultry. CAB International: Oxford shire, 2008
Cheng L, Wang Y, Zhang C, Wu C , Xu J, Zhu H, Leng J, Bai Y, Guan R, Hou W. Genetic analysis and QTL detection of reproductive period and post-flowering photoperiod responses in soybean. Theor. Appl. Genet. 123: 421–429, 2011
Ghimire T, Neupane S, Gharti DB, Subedi S. Management of anthracnose in soybean using fungicide. Journal of Nepal Agricultural Research Council.1:29-32, 2016
Guan R, Chang R, Li Y, Wang L, Liu Z, Qiu L. Genetic diversity comparison between Chinese and Japanese soybeans (Glycine max (L.) Merr.).Genetic Resources Crop Evolution 57(2):229–42, 2010
Hao Fanand, Jia-You Chu. A Brief Review of Short Tandem Repeat Mutation. Genomics Proteomics Bioinformatics 5(1): 7–14, 2007
Hartman GL, West ED, Herman TK. Crops that feed the world 2. Soybean— worldwide production, use, and constraints caused by pathogens and pests. Food Security (1):5-17, 2013
Hoeck, J.A. ; Fehr, W.R. ; Shoemaker, R.C.; Welke, G.A. ; Johnson, S.L. ; Cianzio. Molecular marker analysis of seed size in soybean. Crop Sci 43:68–74, 2003
Hyten, D.L., Pantalone, V.R. , Sams, C.E. ,Saxton, A.M., Landau-Ellis, D., Stefaniak, T.R, Schmidt, M.E. Seed quality QTL in a prominent soybean population. Theor. Appl. Genet.109: 552–561, 2004
Hwang, T.Y.; Nakamoto, Y.; Kono, I.; Enoki, H.; Funatsuki, H.; Kitamura, K.; Ishimoto, M. Genetic Diversity of Cultivated and Wild Soybeans Including Japanese Elite Cultivars as Revealed by Length Polymorphism of SSR Markers. Breed. Sci 58:315–323, 2008
Ikeuchi M, Sugimoto K, Iwase A. Plant callus: Mechanisms of induction and repression. Plant Cell 25(9):3159-3173, 2013
Jang, S.J., Park, S.J., Park, K.H., Song, H.L.,Cho, Y.G.,Jong, S.K., Kang, J.H., Kim, H.S. Genetic Diversity and Identification of Korean Soybean Cultivars Including Certified Cultivars Based on SSR Markers. Crop Sci 54, 231–240, 2009
Jiwei Yin1, Hong Zhao, Xingting Wu, Yingxue Ma, Jingli Zhang, Ying Li, Guirong Shao, Hairong Chen, Ruixi Han, Zhenjiang Xu1. SSR marker based marker-based analysis for identification and of genetic diversity of non-heading Chinese cabbage varieties. Plant Sci, 2023
Jong, S.K., Kim, S.H., Woo, S.H., Kim, H.S. Comparison of Pedigree-and DNA-Based Genetic Similarity among Korean Soybean Cultivars. Breed. Sci 38:19–25, 2006
Keim P, Diers BW, Olson TC, Shoemaker RC. Rflp mapping in soybean: Association between marker loci and variation in quantitative traits. Genetics.126(3):735-742, 1990
Khan, M.A.,Sahile, A.A., Jan, R., Asaf, S., Hamayun, M., Imran, M., Adhikari, A., Kang, S.-M., Kim, K.-M., Lee, I.-J. Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses. BMC Plant Biol, 2021
Kuroda Y, Kaga A, Tomooka N, Yano H, Takada Y, Kato S, Vaughan D. QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields. Ecol Evol 3(7):2150-68, 2013
Lee, K., Rahman, M.S., Kim, A.N., Gul, K., Kang, S.W., Chun, J., Kerr, W.L., Choi, S.G. Quality characteristics and storage stability of low-fat tofu prepared with defatted soy flours treated by supercritical-CO2 and hexane. LWT Food Sci. Technol100, 237–243, 2019
Lee, S. H., Bailey, M. A., Mian, M. A. R., Carter, T. E., Ashley, D. A., Hussey, R. S., Boerma, H.R. Molecular markers associated with soybean plant height, lodging, and maturity across locations. Crop Sci:36(3),728-735,1999
Martins, A.C.B. Sousa , K. Martins , J.C. Oliveira , R.B.T. Yomura , L.M. Silva , J.F.M. Valls , G.M.L. Assis, T. Campos5.Genetic diversity of the forage peanut in the Jequitinhonha, São Francisco, and Paranã River valleys of Brazil. Genet. Mol , 2016
Mataveli, L.R.V., Pohl, P., Mounicou, S , Arruda, M.A.Z., Szpunar, J. A comparative study of element concentrations and binding in transgenic and non-transgenic soybean seeds. Metallomics 800–805, 2010
Maughan PJ, Saghi Maroof MA, Buss GR. Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean. Genome 38(4):715-723, 1995
Mcnally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE et al. Genome wide snp variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci 106(30):12273-12278, 2009
Min W, Run-zhi L, Wan-ming Y, Wei-jun D. Assessing the genetic diversity of cultivars and wild soybeans using SSR markers. African Journal of Biotechnology 9(31):4857–66, 2010
Nigam, B., Dubey, R.S., Rathore, D. Protective role of exogenously supplied salicylic acid and PGPB (Stenotrophomonas sp.) On spinach and soybean cultivars grown under salt stress. Sci. Hortic , 2022
Ososki, A.L., Kennelly, E.J. Phytoestrogens: A review of the present state of research. Phytother. Res 17, 845–869, 2003
Panthee, D.R., Pantalone, V.R., Saxton, A.M., West, D.R., Sams, C.E. Quantitative trait loci for agronomic traits in soybean. Plant Breed. 126: 51–57, 2007
Panthee, D.R., Pantalone, V.R., West, D.R., Saxton, A.M. and Sams, C.E. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. (2005) Crop Sci. 45: 2015–2022.
Quanzhong Dong, Kaixin Zhang, Xu Sun, Xiaocui Tian, Zhongying Qi, Yanlong Fang, Xiyu Li, Yue Wang, Jie Song, Jiajing Wang, Chang Yang, Sitong Jiang, Wen-Xia Li, Hailong Ning. Mapping QTL underlying plant height at three development stages and its response to density in soybean (Glycine max (L.) Merri.). Biotechnology & Biotechnological Equipment 34(1)395-404, 2020
Rahman, S.U., mccoy, E., Raza, G., Ali, Z., Mansoor, S., Amin, I. Improvement of soybean, a way forward transition from genetic engineering to new plant breeding technologies. Mol. Biotechnol Online ahead of print, 2022
S. P. Jeevan Kumar, C. Susmita1, K. V. Sripathy, Dinesh K. Agarwa, Govind Pal, Arvind Nath Singh, Sanjay Kumar, Abhishek Kumar Rai1, Jesus Simal. Molecular characterization and genetic diversity studies of Indian soybean (Glycine max (L.) Merri.) . Cultivars using SSR markers. Molecular Biology Report 49:2129–2140, 2022
Saghai Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci:91(12):5466-70, 1994
Sakai, T., Kogiso, M. Soy isoflavones and immunity. JIM 167-173,2008
Shah, M.M., Gill, K.S., Baenziger, P.S., Yen, Y., Kaeppler, S.M. and Ariyarathme, H.M. Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci 39:1728–17400, 1999
Singh, R.J.; Nelson, R.L.; Chung, G. Genetic Resources, Chromosome Engineering, and Crop Improvement, Chapter 2: Soybean (Glycine max (L.) Merr.). Boca Raton, 2007
Vignal A, Milan D , Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics. Genetics Selection Evolution 34(3):275–305, 2002
Wang, L.,Guan, R., Liu, Z., Chang, R., Qiu, L. Genetic Diversity of Chinese Cultivated Soybean Revealed by SSR Markers. Crop Sci 46:1032–1038, 2006
Xu, R., Hu, W., Zhou, Y., Zhang, X., Xu, S., Guo, Q., Qi, P., Chen, L., Yang, X., Zhang, F. Use of near-infrared spectroscopy for the rapid evaluation of soybean [Glycine max (L.) Merri.] water soluble protein content. Spectrochim Acta A Mol Biomol Spectrosc, 2020