| 研究生: |
羅方羿 Lo, Fang-Yi |
|---|---|
| 論文名稱: |
多廠熱交換網路翻修最適化設計及利益分攤計畫 Optimal Multi-Plant HEN Retrofit Designs and Benefit Allocation Plans |
| 指導教授: |
張珏庭
Chang, Chuei-Tin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 293 |
| 中文關鍵詞: | 廠際熱整合 、翻修設計 、數學規劃模式 、合作賽局 、核 、風險夏普利值 |
| 外文關鍵詞: | interplant heat integration, retrofit design, mathematical programming model, cooperative game, core, risk-based Shapley value |
| 相關次數: | 點閱:211 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年在氣候變遷與環境汙染的情況下,有效的能源利用已成為一項重要的研究議題,而廠際熱整合則為其中一個有效的解決方式。一般而言,工業園區中已存在的工廠大多為不同時間所設立,且均已配置屬於各自廠內的最適化熱交換網路(heat exchanger network, HEN),為了進一步提升工業園區的整體能源使用效率,故本研究發展出多廠熱交換網翻修設計的方法。另外,由於求解混合整數非線性規劃模型之目標為最大年總成本節省(total annual cost saving, TACS),若各廠所分配之收益不符合公平性與合理性,其多廠熱交換網路設計方案即可能無法實現。為了解決此一利益分配問題,本研究採用兩階段方法分別產生最適化之多廠熱交換網路翻修設計與相應之利益分配方案。第一階段為透過直接或間接廠際熱整合方法產生基於三種不同翻修策略之多廠熱交換網路翻修設計。接著在第二階段計算基於合作賽局理論的相關指標,即核(core)、夏普利值(Shapley value)和風險夏普利值(risk-based Shapley value)。其中,夏普利值提供一個基於各廠平均邊際貢獻之利益分配方案,風險夏普利值則額外考慮了聯盟中潛在工廠停工所造成之風險損失,而各分配方案之可行性則可透過核以進行進一步檢驗。最後,本論文會以三廠案例詳細說明本研究所提出之方法。
Energy efficiency has become an important issue in recent years due to serious problems caused by climate change and environmental pollution. Interplant heat integration is one of effective ways to address this issue. Generally, the existing chemical plants in an industrial park were rarely constructed at the same time and each has already been equipped with an optimal HEN. To further improve the energy efficiency of the entire park, the retrofit designs of multi-plant HENs are developed in this study. Since the HENs are traditionally revamped by solving a MINLP model to minimize the total annual cost (TAC) saving, the resulting scheme may not be realized if the total benefit is not allocated to the participating plants fairly. To resolve this profit distribution issue, a two-stage procedure is proposed to generate the optimal multi-plant HEN retrofit designs and also the corresponding benefit allocation plan. Three different revamp strategies are first utilized to generate the multi-plant retrofit designs via direct or indirect interplant heat exchanges. The benefit allocation schemes are determined according to the core, the Shapley values and the risk-based Shapley values in the second stage. The Shapley values provide initial distribution plan based on the average marginal contributions of plants, while the risk-based Shapley values take the additional expected loss of potential fallouts due to unplanned plant shutdowns into consideration. The feasibilities of the above allocation plans can then be tested according to the criteria of core. Finally, the proposed methodology is illustrated in detail with a three-plant example.
1. Bagajewicz, M., Rodera, H., 2002. Multiple plant heat integration in a total site. AIChE Journal 48(10), 2255-2270.
2. Bradley, G.H., Brown, G.G., Graves, G.W., 1977. Design and implementation of large scale primal transshipment algorithms. Management Science 24(1), 1-34.
3. Chang, C., Chen, X., Wang, Y., Feng, X., 2017. Simultaneous optimization of multi-plant heat integration using intermediate fluid circles. Energy 121, 306-317.
4. Chang, C., Chen, X., Wang, Y., Feng, X., 2017. Simultaneous synthesis of multi-plant heat exchanger networks using process streams across plants. Computers & Chemical Engineering 101, 95-109.
5. Chang, C., Wang, Y., Feng, X., 2015. Indirect heat integration across plants using hot water circles. Chinese Journal of Chemical Engineering 23(6), 992-997.
6. Chang, H.H., Chang, C.T., Li, B.H., 2018. Game-theory based optimization strategies for stepwise development of indirect interplant heat integration plans. Energy 148, 90-111.
7. Cheng, S.L., Chang, C.T., Jiang, D., 2014. A game-theory based optimization strategy to configure inter-plant heat integration schemes. Chemical Engineering Science 118, 60-73.
8. Ciric, A.R., Floudas, C.A., 1989. A retrofit approach for heat exchanger networks. Computers & Chemical Engineering 13(6), 703-715.
9. Ciric, A.R., Floudas, C.A., 1990. A comprehensive optimization model of the heat exchanger network retrofit problem. Heat Recovery Systems and CHP 10(4), 407-422.
10. Fernandez, F.R., Hinojosa, M.A., Puerto, J., 2002. Core Solutions in Vector-Valued Games. J. Optim. Theory Appl. 112, 331-360.
11. Floudas, C.A., Ciric, A.R., Grossmann, I.E., 1986. Automatic synthesis of optimum heat exchanger network configurations. AIChE Journal 32(2), 276-290.
12. Grabisch, M., Xie, L., 2007. A new approach to the core and Weber set of multichoice games. Math. Method Oper. Res. 66(3), 491-512.
13. Gundersen, T., Grossmann, I.E., 1990. Improved optimization strategies for automated heat exchanger network synthesis through physical insights. Computer & Chemical Engineering 14(9), 925-944.
14. Hiete, M., Ludwig, J., Schultmann, F., 2012. Intercompany Energy Integration. J. Ind. Ecol. 16(5), 689-698.
15. Hong, X., Liao, Z., Sun, J., Jiang, B., Wang, J., Yang, Y., 2019. Transshipment type heat exchanger network model for intra- and inter-plant heat integration using process streams. Energy 178, 853-866.
16. Hoyland, A., Rausand, M., 1994. System reliability theory: models and statistical method. J. Wiley.
17. Jin, Y., Chang, C.T., Li, S., Jiang, D., 2018. On the use of risk-based Shapley values for cost sharing in interplant heat integration programs. Applied Energy 211, 904-920.
18. Kralj A.K., 2008. Heat Integration between Two Biodiesel Processes Using a Simple Method. Energy & Fuels 22(3), 1972-1979.
19. Laukkanen, T., Tveit, T.M., Fogelholm, C.J., 2012. Simultaneous heat exchanger network synthesis for direct and indirect heat transfer inside and between processes. Chem. Eng. Res. Des. 90(9), 1129-1140.
20. Liew, P.Y., Alwi, S.R.W., Klemes, J.J., Varbanov, P.S., Manan, Z.A., 2014. Algorithmic targeting for Total Site Heat Integration with variable energy supply/demand. Appl. Therm. Eng. 70(2), 1073-1083.
21. Liew, P.Y., Theo, W.L., Alwi, S.R.W., Lim, J.S., Manan, Z.A., Klemes, J.J., Varbanov, P.S., 2017. Total Site Heat Integration planning and design for industrial, urban and renewable systems. Renew. Sust. Energ. Rev. 68, 964-985.
22. Liu, L., Song, H., Zhang, L., Du, J., 2018. Heat-integrated water allocation network synthesis for industrial parks with sequential and simultaneous design. Computers & Chemical Engineering 108, 408-424.
23. Linnhoff, B., Hindmarsh, E., 1983. The pinch design method for heat exchanger networks. Chemical Engineering Science 38(5), 745-763.
24. Papoulias, S.A., Grossmann, I.E., 1983. A structural optimization approach in process synthesis—II: Heat recovery networks. Computers & Chemical Engineering 7(6), 707-721.
25. Ponce-Ortega, J.M., Jiménez-Gutiérrez, A., Grossmann, I.E., 2008. Simultaneous Retrofit and Heat Integration of Chemical Processes. Ind. Eng. Chem. Res. 47(15), 5512-5528.
26. Shapley, L.S., 1953. A value for n-person games. Contributions to the Theory of Games, 2(28), 307-317.
27. Smith, R., Jobson, M., Chen, L., 2010. Recent development in the retrofit of heat exchanger networks. Applied Thermal Engineering, 30(16), 2281-2289.
28. Song, R., Chang, C., Tang, Q., Wang, Y., Feng, X., El-Halwagi, M.M., 2017. The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model. Energy 135, 382-393.
29. Sorsak, A., Kravanja, Z., 2004. MINLP retrofit of heat exchanger networks comprising different exchanger types. Computers & Chemical Engineering 28(1-2), 235-251.
30. Tan, R.R., Andiappan, V., Wan, Y.K., Ng, R.T.L., Ng, D.K.S., 2016. An optimization-based cooperative game approach for systematic allocation of costs and benefits in interplant process integration. Chem. Eng. Res. Des. 106, 43-58.
31. Wang, Y., Chang, C., Feng, X., 2015. A systematic framework for multi-plants Heat Integration combining Direct and Indirect Heat Integration methods. Energy 90, 56-67.
32. Wang, Y., Feng, X., 2016. Heat Integration Across Plants Considering Distance Factor. Advances in Energy Systems Engineering, 621-648.
33. Yee, T.F., Grossmann, I.E., 1990. Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis. Computers & Chemical Engineering 14(10), 1165-1184.
34. Yee, T.F., Grossmann, I.E., 1991. A screening and optimization approach for the retrofit of heat-exchanger networks. Ind. Eng. Chem. Res. 30(1), 146-162.
35. Zhang, B.J., Li, J., Zhang, Z.L., Wang, K., Chen, Q.L., 2016. Simultaneous design of heat exchanger network for heat integration using hot direct discharges/feeds between process plants. Energy 109, 400-411.