簡易檢索 / 詳目顯示

研究生: 吳玉堂
Wu, Yu-Tang
論文名稱: 於混合實驗的正合D-最適實驗設計之投影粒子群演算法
Exact D-optimal Designs for the Mixture Models via Projection Particle Swarm Optimization
指導教授: 陳瑞彬
Chen, Ray-Bing
共同指導教授: 林敏雄
Lin, Matthew M.
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 28
中文關鍵詞: D-最適設計正合最適設計羅吉斯迴歸粒子群演算法多項式模型
外文關鍵詞: D-optimal design, Exact optimal design, Logistic regression, Particle Swarm Optimization, Polynomial model
相關次數: 點閱:85下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從最適實驗設計的概念被提出後,至今已普遍地被接受並應用於各項領域中。粒子群演算法為一個次經驗演算法,簡單並具有強大的能力能解決複雜的最佳化問題。近幾年,由於粒子群演算法的潛力與優點,已被廣泛應於在各領域中也引起學界的注意。我們將此演算法應用於各種不同混合模型與羅吉斯迴歸混合模型中找出其正合最適設計並與其他結果做比較。

    Particle swarm optimization (PSO) is a meta-heuristic algorithm which is simple to use but powerful to solve complicated optimization problems. In recent years, PSO has been used in many aspects and attracts people's attention due to the potential abilities and considerable advantages of the PSO algorithm. In this thesis, we apply the projection PSO algorithm to find exact D-optimal designs with respect to the different numbers of support points for different types of mixture models. In addition, we also take the projection PSO algorithm to search the exact D-optimal mixture designs for binary response based on the logistic models.

    摘要 i Abstract ii 誌謝 iii Contents iv List of Tables v List of Figures vii 1 Introduction 1 2 Preliminaries 3 2.1 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Optimal Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Projection Particle Swarm Optimization 6 4 Numerical Results 10 4.1 Incomplete Scheffé Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2 Becker’s and Kasatkin’s Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 Logistic Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5 Conclusion 26 References 27

    Atkinson, A. C. and Donev, A. N. (1989). The Construction of Exact D-Optimum Experimental Designs with Application to Blocking Response Surface Designs. Biometrika, 76(3):515-526.

    Atkinson, A. C., Donev, A. N. and Tobias, R. D. (2007). Optimum Experimental Designs, with SAS. Oxford University Press

    Borkowski, J. (2003). Using a Genetic Algorithm to Generate Small Exact Response Surface Designs. Journal of Probability and Statistical Science, 1:65-88.

    Chen, R.-B., Chang, S.-P., Wang, W., Tung, H.-C. and Wong, W. K. (2015). Minimax Optimal Designs via Particle Swarm Optimization Methods. Statistics and Computing, 25:975-988.

    Chen, P.-Y. (2019). globpso. https://github.com/pingyangchen/globpso

    Fedorov, V. V. (1972). Theory of Optimal Experiments. Academic Press, New York.

    Kennedy, J. and Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of IEEE International Conferenec on Neural Networks, 4:1942-1948.

    Kiefer, J. (1959). Optimum Experimental Designs. Journal of the Royal Statistical Society: Series B, 21(2):272-304.

    Kiefer, J. (1974). General Equivalence Theory for Optimum Designs (Approximate Theory). Annals of Statistics, 2(5):849-879.

    Mancenido, M. V., Pan, R., Montgomery, D. C. and Anderson-Cook, C. M. (2019). Comparing D-optimal designs with common mixture experimental designs for logistic regression. Chemometrics and Intelligent Laboratory Systems, 187:11-18.

    Meyer, R. and Nachtsheim, C. (1995). The Coordinate-Exchange Algorithm for Constructing Exact Optimal Experimental Designs. Technometrics, 37(1):60-69.

    Mitchell, T. (1974). An Algorithm for the Construction of D-optimal Experimental Designs. Technometrics, 16(2):203-211.

    Qiu, J., Chen, R.-B., Wang, W. and Wong, W. K. (2014). Using Animal Instincts to Design Efficient Biomedical Studies via Particle Swarm Optimization. Swarm and Evolutionary Computation, 18:1-10.

    Smith, K. (1918). On the Standard Deviations of Adjusted and Interpolated Values of an Observed Polynomial Function and its Constants and the Guidance They Give Towards a Proper Choice of the Distribution of the Observations. Biometrika, 12(1/2):1-85.

    White, L. V. (1973). An Extension of the General Equivalence Theorem to Nonlinear Models. Biometrika, 60(2):345-348.

    Wong, W. K., Chen, R.-B., Huang, C.-C. and Wang, W. (2015). A Modified Particle Swarm Optimization Technique for Finding Optimal Designs for Mixture Models. PloS one, 10(6):e0124720.

    下載圖示 校內:2025-06-22公開
    校外:2025-06-22公開
    QR CODE