簡易檢索 / 詳目顯示

研究生: 李蓉蓉
Li, Jung-Jung
論文名稱: 以重氮化合物進行分子內N-H卡賓插入反應合成2-膦酸酯吲哚
Synthesis of 2-Phosphoindoles by Intramolecular N-H Carbene insertion of Diazo Compounds
指導教授: 周鶴軒
Chou, Ho-Hsuan
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 190
中文關鍵詞: 重氮化合物分子內N-H卡賓插入反應2-膦酸酯吲哚
外文關鍵詞: diazo compound, intramolecular N-H carbene insertion, 2-phosphoindole
相關次數: 點閱:37下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用重氮化合物與銠金屬催化劑──乙酸亞銠 (Rh2(OAc)4) 進行分子內N-H卡賓插入反應得到2-膦酸酯吲哚。
    以往合成2-膦酸酯吲哚的方式多為以現有的吲哚化合物和過量磷試劑在金屬的催化下進行反應,這些方法多半需要高溫、耗時、過量的化學藥劑且產物多為3-膦酸酯吲哚,因此我們希望可以設計出一種較溫和、原子使用效率高且只會得到2-膦酸酯吲哚的方法。我們利用一系列N-Boc-2-(溴甲基)苯胺的化合物與Seyferth-Gilbert試劑 (重氮甲基膦酸二甲酯) 進行反應,得到相對應的重氮烷基膦酸酯後,再利用重氮基與銠金屬形成金屬卡賓進行分子內N-H插入反應,順利得到N-Boc-2-膦酸酯吲哚。此反應只需要在室溫、一般大氣環境下即可反應,改善了以往嚴苛的條件以及解決位置選擇性的問題。
    此反應雖然順利得到2-膦酸酯吲哚且反應總產率中等甚至偏高,但有獲得意料之外的副產物──吲哚酮,雖然目前沒有完全阻斷它的產生,不過我們推測其機制可能是-氫消除反應時的氫位置不同導致有兩種產物,其中副產物是因為後續水攻擊並脫去亞磷酸二甲酯而生成,經由NMR光譜確實有看到亞磷酸二甲酯的訊號。

    In this study, we reported the synthesis of 2-phosphoindoles by intramolecular N-H carbene insertion with rhodium(II) acetate from the -diazoalkylphosphonate compounds.
    Phosphoindoles are commonly carried out from the indole systems under the treatment of catalytic amount of metals and excess phosphonates or phosphines at high temperature. However, the process regio-selectively prefers 3-phosphoindole over 2-phosphoindole due to the most reactive carbon at C3 position of indole system. In order to develop an exclusive and milder reaction for the synthesis of 2-phosphoindole, we used a series of N-Boc-2-(bromomethyl)anilines to react with Seyferth-Gilbert reagent and obtained the corresponding tert-butyl (2-(2-diazo-2-(dimethoxyphosphoryl)ethyl)-phenyl)carbamates. These well-arranged -diazophosphonates then participated into the rhodium-carbenoid N-H intramolecular insertion.
    Although the process could give 2-phosphoindole derivatives in moderate to high yield at room temperature, the 2-oxindoles always accompanied as side products which might be formed from the two molecular of coordinating water on the undried Rh2(OAc)4. We observed the signal of dimethyl phosphite by NMR and speculated the mechanism might be through a series of -hydride elimination, H2O attacking, and dimethyl phosphite cleavage for the oxindole.

    摘要 II 英文延伸摘要 III 誌謝 VIII 目錄 IX 圖目錄 XI 表目錄 XII 式目錄 XIII 試劑名稱與縮寫對照表 XIV 第一章 緒論 1 1-1. 膦酸酯吲哚 (phosphoindole) 的介紹與合成方式 1 1-2. 重氮化合物(diazo compound)的介紹與合成方法 7 1-3. SGR (Seyferth-Gilbert reagent) 與BOR (Bestmann-Ohira reagent) 11 1-4. 卡賓 (carbene)、金屬卡賓 (metal carbene) 13 1-5. 研究動機 18 第二章 結果與討論 19 2-1. 化合物1、2和其類似物的合成 19 2-2. 重氮化合物的合成 24 2-3. 不同官能基的重氮化合物合成探討 27 2-4. 合成膦酸酯吲哚的最佳化條件與官能基測試探討 33 2-5. 副產物吲哚酮 (oxindole) (12) 的探討 39 第三章 結論 46 第四章 實驗步驟 47 4-1. General information 47 4-2. Synthesis of compound 16, 9, 7 48 4-3. Synthesis of compound 17, 18, 19 50 4-4. Synthesis of compound 5 53 4-5. Synthesis of compound 8 54 4-6. Synthesis of compound 10 55 4-7. Synthesis of compound 3b, 4b 56 4-8. Synthesis of compound 3c, 4c 56 4-9. General procedure for the synthesis of compound 20d-20i 58 4-10. General procedure for the synthesis of compound 3a, 3d-3i 62 4-11. General procedure for the synthesis of compound 4a, 4d-4i 67 4-12. General procedure for the synthesis of compound 6a-6i 71 4-13. General procedure for the synthesis of compound 11a-11k and 12a-12j 80 4-14. General procedure for the synthesis of compound 13a 91 4-15. Synthesis of compound 13’a 92 4-16. Synthesis of compound 21 93 4-17. Synthesis of compound 14 94 4-18. Synthesis of compound 4k, 15, 6k 94 第五章 參考文獻 98 第六章 附錄 105

    [1] Chadha, N.; Silakari, O., Indoles as therapeutics of interest in medicinal chemistry: Bird's eye view. Eur. J. Med. Chem. 2017, 134, 159-184.
    [2] Wikipedia contributors, Indole. https://en.wikipedia.org/w/index.php?title=Indole&oldid=894912923 (accessed 19 June 2019 04:04 UTC).
    [3] (a) Sevrain, C. M.; Berchel, M.; Couthon, H.; Jaffres, P. A., Phosphonic acid: preparation and applications. Beilstein J. Org. Chem. 2017, 13, 2186-2213; (b) Lassalas, P.; Gay, B.; Lasfargeas, C.; James, M. J.; Tran, V.; Vijayendran, K. G.; Brunden, K. R.; Kozlowski, M. C.; Thomas, C. J.; Smith, A. B.; Huryn, D. M.; Ballatore, C., Structure Property Relationships of Carboxylic Acid Isosteres. J. Med. Chem. 2016, 59 (7), 3183-3203; (c) Ballatore, C.; Huryn, D. M.; Smith, A. B., Carboxylic Acid (Bio)Isosteres in Drug Design. ChemMedChem 2013, 8 (3), 385-395.
    [4] Kerr, D. I. B.; Ong, J.; Prager, R. H.; Gynther, B. D.; Curtis, D. R., Phaclofen: a peripheral and central baclofen antagonist. Brain Res. 1987, 405 (1), 150-154.
    [5] Froestl, W.; Mickel, S. J.; Hall, R. G.; von Sprecher, G.; Strub, D.; Baumann, P. A.; Brugger, F.; Gentsch, C.; Jaekel, J., Phosphinic Acid Analogs of GABA. 1. New Potent and Selective GABAB Agonists. J. Med. Chem. 1995, 38 (17), 3297-3312.
    [6] Watkins, J. C.; Korgsgaard-Larsen, P.; Honoré, T., Structure-activity relationships in the development of excitatory ammo acid receptor agonists and competitive antagonists. Trends Pharmacol. Sci. 1990, 11 (1), 25-33.
    [7] Alexandre, F.-R.; Amador, A.; Bot, S.; Caillet, C.; Convard, T.; Jakubik, J.; Musiu, C.; Poddesu, B.; Vargiu, L.; Liuzzi, M.; Roland, A.; Seifer, M.; Standring, D.; Storer, R.; Dousson, C. B., Synthesis and Biological Evaluation of Aryl-phospho-indole as Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. J. Med. Chem. 2011, 54 (1), 392-395.
    [8] (a) Dousson, C.; Alexandre, F.-R.; Amador, A.; Bonaric, S.; Bot, S.; Caillet, C.; Convard, T.; da Costa, D.; Lioure, M.-P.; Roland, A.; Rosinovsky, E.; Maldonado, S.; Parsy, C.; Trochet, C.; Storer, R.; Stewart, A.; Wang, J.; Mayes, B. A.; Musiu, C.; Poddesu, B.; Vargiu, L.; Liuzzi, M.; Moussa, A.; Jakubik, J.; Hubbard, L.; Seifer, M.; Standring, D., Discovery of the Aryl-phospho-indole IDX899, a Highly Potent Anti-HIV Non-nucleoside Reverse Transcriptase Inhibitor. J. Med. Chem. 2016, 59 (5), 1891-1898; (b) Zhou, X.-J.; Garner, R. C.; Nicholson, S.; Kissling, C. J.; Mayers, D., Microdose pharmacokinetics of IDX899 and IDX989, candidate HIV-1 non-nucleoside reverse transcriptase inhibitors, following oral and intravenous administration in healthy male subjects. J. Clin. Pharmacol. 2009, 49 (12), 1408-1416.
    [9] Bisseret, P.; Thielges, S.; Bourg, S.; Miethke, M.; Marahiel, M. A.; Eustache, J., Synthesis of a 2-indolylphosphonamide derivative with inhibitory activity against yersiniabactin biosynthesis. Tetrahedron Lett. 2007, 48 (35), 6080-6083.
    [10] Wikipedia contributors, Yersiniabactin. https://en.wikipedia.org/w/index.php?title=Yersiniabactin&oldid=895730577 (accessed 19 June 2019 03:56 UTC).
    [11] Thielges, S.; Meddah, E.; Bisseret, P.; Eustache, J., New synthesis of benzo[b]furan and indole derivatives from 1,1-dibromo-1-alkenes using a tandem Pd-assisted cyclization–coupling reaction. Tetrahedron Lett. 2004, 45 (5), 907-910.
    [12] (a) Wang, H.; Li, X.; Wu, F.; Wan, B., Direct Oxidative C-P Bond Formation of Indoles with Dialkyl Phosphites. Synthesis 2012, 44 (06), 941-945; (b) Su, F.; Lin, W.; Zhu, P.; He, D.; Lin, J.; Zhang, H.-J.; Wen, T.-B., Regioselective Direct C3-Phosphorylation of N-Sulfonylindoles under Mild Oxidative Conditions. Adv. Synth. Catal. 2017, 359 (6), 947-951; (c) Shaikh, R. S.; Ghosh, I.; König, B., Direct C−H Phosphonylation of Electron-Rich Arenes and Heteroarenes by Visible-Light Photoredox Catalysis. Chem. Eur. J. 2017, 23 (50), 12120-12124; (d) Sun, W.-B.; Xue, J.-F.; Zhang, G.-Y.; Zeng, R.-S.; An, L.-T.; Zhang, P.-Z.; Zou, J.-P., Silver-Catalyzed Direct Csp2-H Phosphorylation of Indoles Leading to Phosphoindoles. Adv. Synth. Catal. 2016, 358 (11), 1753-1758; (e) Yadav, M.; Dara, S.; Saikam, V.; Kumar, M.; Aithagani, S. K.; Paul, S.; Vishwakarma, R. A.; Singh, P. P., Regioselective Oxidative C–H Phosphonation of Imidazo[1,2-a]pyridines and Related Heteroarenes Mediated by Manganese(III) Acetate. Eur. J. Org. Chem. 2015, 2015 (29), 6526-6533; (f) Zhou, A.-X.; Mao, L.-L.; Wang, G.-W.; Yang, S.-D., A unique copper-catalyzed cross-coupling reaction by hydrogen (H2) removal for the stereoselective synthesis of 3-phosphoindoles. Chem. Commun. 2014, 50 (62), 8529-8532.
    [13] Kondoh, A.; Yorimitsu, H.; Oshima, K., Synthesis of 2-Indolylphosphines by Palladium-Catalyzed Annulation of 1-Alkynylphosphine Sulfides with 2-Iodoanilines. Org. Lett. 2010, 12 (7), 1476-1479.
    [14] Qiaolan Yang, C. W., Jianhui Zhou, Guoxue He, Hong Liu and Yu Zhou, Highly selective C–H bond activation of N-arylbenzimidamide and divergent couplings with diazophosphonate compounds: a catalyst-controlled selective synthetic strategy for 3-phosphorylindoles and 4-phosphorylisoquinolines. Org. Chem. Front. 2019, 393-398
    [15] Wikipedia contributors, Diazo. https://en.wikipedia.org/w/index.php?title=Diazo&oldid=899971648 (accessed 19 June 2019 03:47 UTC).
    [16] Lien, H.-Y., A new method to synthesize alpha-diazoalkylphosphonates with Seyferth-Gilbert reagent under a mild environment.
    [17] Nicolle, S. M.; Moody, C. J., Potassium N-Iodo p-Toluenesulfonamide (TsNIK, Iodamine-T): A New Reagent for the Oxidation of Hydrazones to Diazo Compounds. Chem. Eur. J. 2014, 20 (15), 4420-4425.
    [18] Pramanik, M. M. D.; Chaturvedi, A. K.; Rastogi, N., Substituent controlled reactivity switch: selective synthesis of α-diazoalkylphosphonates or vinylphosphonates via nucleophilic substitution of alkyl bromides with Bestmann–Ohira reagent. Chem. Commun. 2014, 50 (85), 12896-12898.
    [19] Pramanik, M. M. D.; Rastogi, N., Synthesis of α-diazo-β-keto esters, phosphonates and sulfones via acylbenzotriazole-mediated acylation of a diazomethyl anion. Org. Biomol. Chem. 2016, 14 (4), 1239-1243.
    [20] Seyferth, D.; Marmor, R. S.; Hilbert, P., Reactions of dimethylphosphono-substituted diazoalkanes. (MeO)2P(O)CR transfer to olefins and 1,3-dipolar additions of (MeO)2P(O)C(N2)R. J. Org. Chem. 1971, 36 (10), 1379-1386.
    [21] Gilbert, J. C.; Weerasooriya, U., Diazoethenes: their attempted synthesis from aldehydes and aromatic ketones by way of the Horner-Emmons modification of the Wittig reaction. A facile synthesis of alkynes. J. Org. Chem. 1982, 47 (10), 1837-1845.
    [22] Dickson, H. D.; Smith, S. C.; Hinkle, K. W., A convenient scalable one-pot conversion of esters and Weinreb amides to terminal alkynes. Tetrahedron Lett. 2004, 45 (29), 5597-5599.
    [23] Muruganantham, R.; Mobin, S. M.; Namboothiri, I. N. N., Base-Mediated Reaction of the Bestmann−Ohira Reagent with Nitroalkenes for the Regioselective Synthesis of Phosphonylpyrazoles. Org. Lett. 2007, 9 (6), 1125-1128.
    [24] Graphical Abstracts. Synth. Commun. 2004, 34 (18), ix-xvi.
    [25] (a) Wikipedia contributors, Carbene. https://en.wikipedia.org/w/index.php?title=Carbene&oldid=901904337 (accessed 19 June 2019 04:04 UTC); (b) Takasu, N., Diazo-mediated Metal Carbenoid Chemistry ~Recent Developments of Variety Bond Formation Methods~. http://www.f.u-tokyo.ac.jp/~kanai/seminar/pdf/Lit_Takasu_D2.pdf.
    [26] (a) Rowlands, G., Carbenes and Carbene Complexes II. http://www.massey.ac.nz/~gjrowlan/adv/lct7.pdf; (b) Rowlands, G., Carbenes and Carbene Complexes I. http://www.massey.ac.nz/~gjrowlan/adv/lct6.pdf; (c) Wikipedia contributors, Transition metal carbene complex. https://en.wikipedia.org/w/index.php?title=Transition_metal_carbene_complex&oldid=896876149 (accessed 19 June 2019 04:05 UTC).
    [27] Davies, H. M.; Beckwith, R. E., Catalytic enantioselective C-H activation by means of metal-carbenoid-induced C-H insertion. Chem. Rev. 2003, 103 (8), 2861-904.
    [28] Zhu, S.-F.; Zhou, Q.-L., Transition-Metal-Catalyzed Enantioselective Heteroatom–Hydrogen Bond Insertion Reactions. Acc. Chem. Res. 2012, 45 (8), 1365-1377.
    [29] (a) Davis, F. A.; Wu, Y.; Xu, H.; Zhang, J., Asymmetric synthesis of cis-5-substituted pyrrolidine 2-phosphonates using metal carbenoid NH insertion and delta-amino beta-ketophosphonates. Org. Lett. 2004, 6 (24), 4523-5; (b) Wang, Y.; Zhu, S., Convenient Synthesis of Polyfunctionalized β-Fluoropyrroles from Rhodium(II)-Catalyzed Intramolecular N−H Insertion Reactions. Org. Lett. 2003, 5 (5), 745-748; (c) Aller, E.; Buck, R. T.; Drysdale, M. J.; Ferris, L.; Haigh, D.; Moody, C. J.; Pearson, N. D.; Sanghera, J. B., N–H insertion reactions of rhodium carbenoids. Part 1. Preparation of α-amino acid and α-aminophosphonic acid derivatives. J. Chem. Soc., Perkin Trans. 1 1996, (24), 2879-2884.
    [30] (a) Song, X.-G.; Ren, Y.-Y.; Zhu, S.-F.; Zhou, Q.-L., Enantioselective Copper-Catalyzed Intramolecular N−H Bond Insertion: Synthesis of Chiral 2-Carboxytetrahydroquinolines. Adv. Synth. Catal. 2016, 358 (15), 2366-2370; (b) Lee, E. C.; Fu, G. C., Copper-Catalyzed Asymmetric N−H Insertion Reactions:  Couplings of Diazo Compounds with Carbamates to Generate α-Amino Acids. J. Am. Chem. Soc. 2007, 129 (40), 12066-12067.
    [31] (a) Anding, B. J.; Dairo, T. O.; Woo, L. K., Reactivity Comparison of Primary Aromatic Amines and Thiols in E–H Insertion Reactions with Diazoacetates Catalyzed by Iridium(III) Tetratolylporphyrin. Organometallics 2017, 36 (9), 1842-1847; (b) Chen, L.; Cui, H.; Wang, Y.; Liang, X.; Zhang, L.; Su, C. Y., Carbene insertion into N-H bonds with size-selectivity induced by a microporous ruthenium-porphyrin metal-organic framework. Dalton Trans 2018, 47 (11), 3940-3946; (c) Zhou, M.; Zhang, H.; Xiong, L.; He, Z.; Wang, T.; Xu, Y.; Huang, K., Fe-Porphyrin functionalized microporous organic nanotube networks and their application for the catalytic olefination of aldehydes and carbene insertion into N–H bonds. Polym. Chem. 2017, 8 (24), 3721-3730.
    [32] Hechavarrı́a Fonseca, M. a.; Eibler, E.; Zabel, M.; König, B., Synthesis of novel nitrogen-containing ligands for the enantioselective addition of diethylzinc to aldehydes. Tetrahedron: Asymmetry 2003, 14 (14), 1989-1994.
    [33] (a) Borrero, N. V.; DeRatt, L. G.; Ferreira Barbosa, L.; Abboud, K. A.; Aponick, A., Tandem gold-catalyzed dehydrative cyclization/diels-alder reactions: facile access to indolocarbazole alkaloids. Org. Lett. 2015, 17 (7), 1754-7; (b) Wagner, A. M.; Knezevic, C. E.; Wall, J. L.; Sun, V. L.; Buss, J. A.; Allen, L. T.; Wenzel, A. G., A copper(II)-catalyzed, sequential Michael–aldol reaction for the preparation of 1,2-dihydroquinolines. Tetrahedron Lett. 2012, 53 (7), 833-836.
    [34] Gilbert, J. C.; Weerasooriya, U., Elaboration of aldehydes and ketones to alkynes: improved methodology. J. Org. Chem. 1979, 44 (26), 4997-4998.
    [35] (a) Li, P.; Huang, Y.; Hu, X.; Dong, X. Q.; Zhang, X., Access to Chiral Seven-Member Cyclic Amines via Rh-Catalyzed Asymmetric Hydrogenation. Org. Lett. 2017, 19 (14), 3855-3858; (b) Synthesis of 1-Acyl-3,4-dihydroquinazoline-2(1H)-thiones by Cyclization of N-[2-(Isothiocyanatomethyl)phenyl] Amides Generated in situ from N-[2-(Azidomethyl)phenyl] Amides. Helv. Chim. Acta 2014.
    [36] Zheng, T.; Tan, J.; Fan, R.; Su, S.; Liu, B.; Tan, C.; Xu, K., Diverse ring opening of thietanes and other cyclic sulfides: an electrophilic aryne activation approach. Chem. Commun. 2018, 54 (11), 1303-1306.
    [37] Zhang, S. L.; Yu, Z. L., Divergent synthesis of indoles, oxindoles, isocoumarins and isoquinolinones by general Pd-catalyzed retro-aldol/alpha-arylation. Org. Biomol. Chem. 2016, 14 (44), 10511-10515.
    [38] Brailsford, J. A.; Lauchli, R.; Shea, K. J., Synthesis of the bicyclic welwitindolinone core via an alkylation/cyclization cascade reaction. Org. Lett. 2009, 11 (22), 5330-3.
    [39] (a) K.Moedritzer, THE STRUCTURE OF DIALYKL AND DIARYL PHOSPHONATES. J. Inorg. Nucl. Chem. 1961, 22 (1-2), 19-21; (b) https://archive.cnx.org/contents/306c4521-80e7-4b82-abe4-9b45b9b5f5c7@2/p-31-nmr-spectroscopy#import-auto-id1163653865485.
    [40] Quach, R.; Furkert, D. P.; Brimble, M. A., Synthesis of benzannulated spiroacetals using chiral gold–phosphine complexes and chiral anions. Tetrahedron Lett. 2013, 54 (44), 5865-5868.
    [41] O'Mahony, R. M.; Broderick, C. M.; Lynch, D.; Collins, S. G.; Maguire, A. R., Synthesis and use of a cost-effective, aqueous soluble diazo transfer reagent – m-carboxybenzenesulfonyl azide. Tetrahedron Lett. 2019, 60 (1), 35-39.
    [42] Maehr, H.; Uskokovic, M. R.; Schaffner, C. P., Concise Synthesis of Dimethyl (2-Oxopropyl)phosphonate and Homologation of Aldehydes to Alkynes in a Tandem Process. Synth. Commun. 2008, 39 (2), 299-310.
    [43] Kosobokov, M. D.; Titanyuk, I. D.; Beletskaya, I. P., An expedient synthesis of diethyl diazomethylphosphonate. Mendeleev Commun. 2011, 21 (3), 142-143.
    [44] Müller, S.; Sasse, F.; Maier, M. E., Synthesis of Pladienolide B and Its 7-Epimer with Insights into the Role of the Allylic Acetate. Eur. J. Org. Chem. 2014, 2014 (5), 1025-1036.
    [45] Selig, P.; Raven, W., A convenient allenoate-based synthesis of 2-quinolin-2-yl malonates and beta-ketoesters. Org. Lett. 2014, 16 (19), 5192-5.
    [46] Havlík, M.; Dolenský, B.; Jakubek, M.; Král, V., Synthesis of Unsymmetrical Tröger's Bases Bearing Groups Sensitive to Reduction. Eur. J. Org. Chem. 2014, 2014 (13), 2798-2805.
    [47] Jarrige, L.; Blanchard, F.; Masson, G., Enantioselective Organocatalytic Intramolecular Aza-Diels-Alder Reaction. Angew. Chem. Int. Ed. Engl. 2017, 56 (35), 10573-10576.
    [48] Zhao, Y.; Huang, B.; Yang, C.; Chen, Q.; Xia, W., Sunlight-Driven Forging of Amide/Ester Bonds from Three Independent Components: An Approach to Carbamates. Org. Lett. 2016, 18 (21), 5572-5575.
    [49] Cronk, W. C.; Mukhina, O. A.; Kutateladze, A. G., Intramolecular photoassisted cycloadditions of azaxylylenes and postphotochemical capstone modifications via Suzuki coupling provide access to complex polyheterocyclic biaryls. J. Org. Chem. 2014, 79 (3), 1235-46.
    [50] Aebly, A. H.; Rainey, T. J., Pd(II)-catalyzed enantioselective intramolecular oxidative amination utilizing (+)-camphorsulfonic acid. Tetrahedron Lett. 2017, 58 (40), 3795-3799.
    [51] Del Vecchio, A.; Caille, F.; Chevalier, A.; Loreau, O.; Horkka, K.; Halldin, C.; Schou, M.; Camus, N.; Kessler, P.; Kuhnast, B.; Taran, F.; Audisio, D., Late-Stage Isotopic Carbon Labeling of Pharmaceutically Relevant Cyclic Ureas Directly from CO2. Angew. Chem. Int. Ed. Engl. 2018, 57 (31), 9744-9748.
    [52] Popp, T. A.; Uhl, E.; Ong, D. N.; Dittrich, S.; Bracher, F., A new approach to monoprotected 1,4-benzodiazepines via a one-pot N-deprotection/reductive cyclization procedure. Tetrahedron 2016, 72 (13), 1668-1674.
    [53] Roper, K. A.; Lange, H.; Polyzos, A.; Berry, M. B.; Baxendale, I. R.; Ley, S. V., The application of a monolithic triphenylphosphine reagent for conducting Appel reactions in flow microreactors. Beilstein J. Org. Chem. 2011, 7, 1648-55.
    [54] Patel, P.; Borah, G., Synthesis of oxindole from acetanilide via Ir(iii)-catalyzed C-H carbenoid functionalization. Chem. Commun. 2016, 53 (2), 443-446.
    [55] Synthesis of 1,3-Di[alkoxy(aryloxy)carbonyl]-2oxo-2,3-dihydroindoles. Tetrahedron 2000.
    [56] Frost, J. R.; Huber, S. M.; Breitenlechner, S.; Bannwarth, C.; Bach, T., Enantiotopos-selective C-H oxygenation catalyzed by a supramolecular ruthenium complex. Angew. Chem. Int. Ed. Engl. 2015, 54 (2), 691-5.
    [57] Izquierdo, J.; Orue, A.; Scheidt, K. A., A dual Lewis base activation strategy for enantioselective carbene-catalyzed annulations. J. Am. Chem. Soc. 2013, 135 (29), 10634-7.

    下載圖示 校內:2024-07-01公開
    校外:2024-07-01公開
    QR CODE