簡易檢索 / 詳目顯示

研究生: 林珈卉
Lin, Chia-Hui
論文名稱: X-微光束與顯微分析聚對二氧環己酮環帶狀球晶之扇形生長與仿生像素化虹彩現象
Microbeam X-Ray and Microscopy Analyses on Ring-Banded Spherulites of Sectored Growth in Poly(p-dioxanone) with Biomimetic Pixelated Iridescence Phenomenon
指導教授: 吳逸謨
Woo, Eamor M.
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 70
中文關鍵詞: 聚對二氧環己酮生物可分解高分子樹枝狀球晶環帶狀球晶
外文關鍵詞: biodegradable polymer, ring-banded spherulites, dendritic spherulites
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用偏光顯微鏡(polarized-light optical microscopy, POM)、掃描式電子顯微鏡(scanning electron microscopy, SEM)、廣角度X光繞射儀(microbeam wide-angle X-ray diffraction, WAXD)、小角度X光散射儀(microbeam small-angle X-ray scanning, SAXS)、微分掃描熱卡計(differential scanning calorimeter, DSC),探討生物可分解高分子聚對二氧環己酮(poly(p-dioxanone), PPDO)摻合聚對位乙烯基酚(poly(vinyl phenol), PVPh)及單寧酸(tannic acid, TA),形成環帶狀球晶之結晶行為、表面形貌及內部晶板排列。第一部分為PPDO/PVPh混摻系統,在PPDO中加入不同比例的PVPh,改變熔融溫度(Tmax)、結晶溫度(Tc),以POM初步觀察球晶形貌,接著以環帶最規則,Tc = 88 oC之樣品進一步藉由SEM觀察球晶上表面細部結構。第二部分為PPDO/PVPh/TA混摻系統,先改變結晶溫度,同樣以POM初步觀察並選出Tc = 78 oC,環帶規則且整體形貌特殊的樹枝狀雙環帶球晶深入分析,並找出最合適的蝕刻條件,再透過SEM分析上表面和內部晶板排列,發現到球晶上表面存在順時針與逆時針兩種不同方向的羽毛狀分形構成週期性環帶的波峰(ridge),不完美結晶的浮凸紋路構成波谷(valley),從球晶斷截面判斷ridge及valley,分別可以對應到垂直於基材(edge-on)的晶板和平行於基材(flat-on)的晶板。接著利用synchrotron microbeam WAXD及SAXS輔助說明本研究的兩個混摻系統PPDO/PVPh及PPDO/PVPh/TA內部的晶板排列方向,進而推測出PPDO球晶的三維結構和生長機制。最後探討PPDO的像素化虹彩性質,針對週期性環帶球晶的有序結構,分析虹彩現象存在的條件。本研究主要討論氫鍵作用力對球晶形貌造成的影響,並結合上表面與內部晶板排列之對應關係,建立出週期性環帶球晶的3-D生長機制。

    Poly(p-dioxanone) (PPDO) is a synthetic poly(ester-ether) used in numerous medical applications due to its distinguished biodegradability and biocompatibility. PPDO is blended with poly(p-vinylphenol) (PVPh) and tannic acid (TA). The addition of PVPh and TA can be diluent to induce dendritic-ringed PPDO spherulites and make the fractal-growth branches on the top surface more distinctive. PPDO with varying content of TA and PVPh at different crystallization temperature (Tc) were evaluated by using polarized optical microscopy (POM) and scanning electron microscope (SEM). Morphologies and interior lamellar arrangement of PPDO/PVPh and PPDO/PVPh/TA blend systems have been investigated. Microbeam small-/wide-angle X-ray scattering (SAXS/WAXD) was used to further confirm the results observed by SEM. The results show that the ridge is composed of feather-like branches and the valley has some embossed structure. In order to probe growth mechanism of ring-banded spherulites, correlation of top surface and interior structure was also investigated. The aim is to analyze the lamellar arrangement of PPDO with TA and PVPh. From the results of fractured surface, they are composed of two perpendicular orientations as ridge and valley. Interior structure is composed of edge-on lamellae in ridge and flat-on lamellae in valley. This study explored possible correlations between the surface on top, the internal grating architecture, and the photonic iridescence properties.

    中文摘要 I Abstract II 誌謝 XIII 目錄 XV 表目錄 XVII 圖目錄 XVIII 第一章 研究目的與文獻回顧 1 1.1 簡介 1 1.2 週期性環帶狀球晶 2 1.3 虹彩性質相關研究 3 1.4 X-ray散射之相關研究 7 1.5 聚對二氧環己酮之相關研究 9 1.6 聚對位乙烯基酚之相關研究 15 1.7 單寧酸之相關研究 17 1.8 研究動機與方向 19 第二章 實驗材料與方法 20 2.1實驗藥品與材料 20 2.2樣品製備 21 2.3實驗使用之儀器與方法 22 2.3.1 偏光顯微鏡 (Polarized-light optical microscopy, POM) 22 2.3.2 高解析度場發式掃描電子顯微鏡 (High-resolution field-emission scanning electron microscopy, HR-FESEM) 22 2.3.3 微分掃描熱卡計 (Differential scanning calorimeter, DSC) 22 2.3.4 微光束廣角度X光繞射儀(Microbeam wide-angle X-ray diffraction, WAXD) 23 2.3.5 微光束小角度X光散射儀 (Microbeam small-angle X-ray scattering, SAXS) 23 第三章 結果與討論 24 3.1 PPDO/PVPh摻合系統之探討 24 3.1.1 球晶形貌觀察 24 3.1.2 球晶上表面形貌及內部結構 28 3.2 PPDO/PVPh/TA摻合系統之探討 31 3.2.1 球晶形貌觀察 31 3.2.2 樹枝狀球晶之上表面觀察 35 3.2.3 樹枝狀球晶之斷截面和內部晶板排列 42 3.2.4 Microbeam X-ray 散射分析 44 3.2.5 分子間作用力與熱分析 49 3.2.6 週期性環帶球晶之虹彩性質分析 51 第四章 結論 56 參考文獻 58 附錄 (Supporting information) 67

    [1] T. P. Haider, C. Völker, J. Kramm, and K. Landfester, ''Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society,'' Angewandte Chemie, vol. 58, pp. 50-62, 2018.
    [2] G. Lugito, C. Su, Y. H. Wang, and E. M. Woo, "Nano-assembly of intertwining lamellae of opposite bending senses in poly (ethylene oxide) co-crystallizing with poly (p-vinyl phenol)," Journal of Polymer Research, vol. 24, no. 10, p. 166, 2017.
    [3] K. C. Yen and E. M. Woo, "Formation of dendrite crystals in poly(ethylene oxide) interacting with bioresourceful tannin," Polymer Bulletin, vol. 62, no. 2, p. 225, 2009.
    [4] Y. T. Yeh and E. M. Woo, "Anatomy into Interior Lamellar Assembly in Nuclei-Dependent Diversified Morphologies of poly(l-lactic acid)," Macromolecules, vol. 51, no. 19, pp. 7722-7733, 2018.
    [5] I. H. Huang, L. Chang, and E. M. Woo, "Tannin induced single crystalline morphology in poly(ethylene succinate)," Macromolecular Chemistry and Physics, vol. 212, no. 11, pp. 1155-1164, 2011.
    [6] Y. H. Mandala, E. M. Woo, H. Ni'mah, and S. Nurkhamidah, "Surface-relief and interior lamellar assembly in Janus-face spherulites of poly(butylene succinate) crystallized with poly(ethylene oxide)," Polymer, vol. 176, pp. 168-178, 2019.
    [7] Y. L. Tseng, K. N. Chuan, and E. M. Woo, "Unusual Ringed/Dendritic Sector Faces in poly(butylene succinate) Crystallized with Isomeric Polymer," Industrial & Engineering Chemistry Research, vol. 59, no. 16, 2020.
    [8] B. Lotz and S. Z. D. Cheng, "A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals," Polymer, vol. 46, no. 3, pp. 577-610, 2005.
    [9] E. M. Woo and G. Lugito, "Origins of periodic bands in polymer spherulites," European Polymer Journal, vol. 71, pp. 27-60, 2015.
    [10] G. Lugito and E. M. Woo, "Lamellar assembly corresponding to transitions of positively to negatively birefringent spherulites in poly(ethylene adipate) with phenoxy," Colloid and Polymer Science, vol. 291, no. 4, pp. 817-826, 2012.
    [11] E. M. Woo, L. Y. Wang, and S. Nurkhamidah, "Crystal lamellae of mutually perpendicular orientations by dissecting onto interiors of poly(ethylene adipate) spherulites crystallized in bulk form," Macromolecules, vol. 45, no. 3, pp. 1375-1383, 2012.
    [12] G. Lugito and E. M. Woo, "Interior lamellar assembly in correlation to top-surface banding in crystallized poly(ethylene adipate)," Crystal Growth & Design, vol. 14, no. 10, pp. 4929-4936, 2014.
    [13] E. M. Woo, Nagarajan, C. H. Su and C. E. Yang, ''Grating assembly in periodic crystal aggregates of aliphatic polyesters with potential iridescence photonics,'' Journal of Polymer Research, vol. 29, no. 66, 2022.
    [15] https://www.phys.uconn.edu/~gibson/Notes/Section5_2/Sec5_2.htm
    [16] C. Palmer, “Diffraction grating handbook,” Journal of the Optical Society of America, vol. 46, no. 1, pp. 20-23, 2005.
    [17] https://www.edmundoptics.com/resource-page/application-notes/optics/all-about-diffraction-gratings/
    [18] S. Nagarajan, E. M. Woo, C. H. Su, C. E. Yang, ''Microstructural periodic arrays in Poly(butylene adipate) featured with photonic crystal aggregates,'' Macromolecular Rapid Communications, vol 42, no. 15, pp. 1-10, 2021.
    [19] Y. H. Liao, S. Nagarajan, E. M. Woo, W. T. Chuang, Y. W. Tsai, ''Synchrotron X-ray analysis and morphology evidence for stereo-assemblies of periodic aggregates in poly(3-hydroxybutyrate) with Unusual Photonic Iridescence,'' Macromolecular Rapid Communications, vol. 42, no. 14, pp. 1-13, 2021.
    [20] A. R. Parker, ''515 million years of structural colour,'' Journal of Optics A Pure and Applied Optics, vol. 2, no. 6, pp. 16-28, 2000.
    [21] S. Kinoshita, S. Yoshioka, J. Miyazaki, ''Physics of structural colors,'' Reports on Progress in Physics, vol. 71, no. 7, pp. 1-30, 2008.
    [22] J. P. Vigneron, P. Simonis, ''Structural colours,'' 1st ed., Elsevier Ltd., vol. 38, pp. 181-218, 2010.
    [23] P. Vukusic, J. R. Sambles, C. R. Lawrence, R. J. Wootton, ''Quantified interference and diffraction in single morpho butterfly scales,'' Proceedings of the Royal Society B: Biological Sciences, vol. 266, no. 1427, pp. 1403-1411, 1999.
    [24] S. Kinoshita, S. Yoshioka, K. Kawagoe, ''Mechanisms of structural colour in the morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,'' Proceedings of the Royal Society B: Biological Sciences, vol. 269, no. 1499, pp. 1417-1421, 2002.
    [25] S. Berthier, E. Charron, J. Boulenguez, ''Morphological structure and optical properties of the wings of morphidae,'' Insect Science, vol. 13, no. 2, pp. 145-158, 2006.
    [26] S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, U. Steiner, ''Pointillist structural color in pollia fruit,'' Proceedings of the National Academy of Sciences, vol. 109, no. 39, pp. 15712-15715, 2012.
    [27] P. Freyer, B. D. Wilts, and D. G. Stavenga, "Reflections on iridescent neck and breast feathers of the peacock, Pavo cristatus," Interface Focus, vol. 9, no. 1, p. 20180043, Feb 6 2019.
    [28] S. M. Doucet, M. G. Meadows, ''Iridescence: A functional perspective,'' Journal of the Royal Society Interface, vol. 6, pp. 115-132, 2009.
    [29] H. Inan ,M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, U. Demirci, "Photonic crystals: emerging biosensors and their promise for point-of-care applications," Chemical Society Reviews, vol. 46, no. 2, pp. 366-388, 2017.
    [30] Y. Fujiwara, "The superstructure of melt‐crystallized polyethylene. I. Screwlike orientation of unit cell in polyethylene spherulites with periodic extinction rings," Journal of Applied Polymer Science, vol. 4, no. 10, pp. 10-15, 1960.
    [31] M. Rosenthal, G. Portale, M. Burghammer, G. Bar, E. T. Samulski, and D. A. Ivanov, "Exploring the origin of crystalline lamella twist in semi-rigid chain polymers: The model of Keith and Padden revisited," Macromolecules, vol. 45, no. 18, pp. 7454-7460, 2012.
    [32] P. Atkins, J. De Paula, and R. Friedman, Physical Chemistry: Quanta, Matter, and Change. Oxford University Press, USA, 2014.
    [33] S. Nagarajan and E. M. Woo, "Morphological analyses evidencing corrugate-grating lamellae assembly in banded spherulites of poly(ethylene adipate)," Polymer, vol. 188, p. 122141, 2020.
    [34] E. L. Heeley, K. Billimoria, N. Parsons, L. Figiel, E. M. Keating, C. T. Cafolla, E. M. Crabb, D. J. Hughes, "In-situ uniaxial drawing of poly-L-lactic acid (PLLA): Following the crystalline morphology development using time-resolved SAXS/WAXS," Polymer, vol. 193, p. 122353, 2020.
    [35] J. Kobayashi, T. Asahi, M. Ichiki, A. Oikawa, H. Suzuki, T. Watanabe, E. Fukada, Y. Shikinami, "Structural and optical properties of poly lactic acids," Journal of Applied Physics, vol. 77, no. 7, pp. 2957-2973, 1995.
    [36] J. Liu, Z. Jiang, S. Zhang, C. Liu, R. A. Gross, T. R. Kyriakides, W. M. Saltzman, "Biodegradation, biocompatibility, and drug delivery in poly(omega-pentadecalactone-co-p-dioxanone) copolyesters," Biomaterials, vol. 32, no. 27, pp. 6646-54, 2011.
    [37] K. K. Yang, X. L. Wang, and Y. Z. Wang, "poly(p-dioxanone) and its copolymers," Journal of Macromolecular Science, Part C: Polymer Reviews, vol. 42, no. 3, pp. 373-398, 2002.
    [38] J. N. Im, J. K. Kim, H. K. Kim, K. Y. Lee, and W. H. Park, "Characteristics of novel monofilament sutures prepared by conjugate spinning," Journal of Biomedical Materials Research, vol. 83, no. 2, pp. 499-504, 2007.
    [39] C. M. Puttlitz, B. D. Adams, T. D. Brown., ''Bioabsorbable pin fixation of intercarpal joints: an evaluation of fixation stiffness,'' Clinical Biomechanics, vol. 12, no. 3, pp. 149- 153, 1997.
    [40] M. A. Sabino, J. Albuerne, A. J. Müller, J. Brisson, and R. E. Prud'homme, "Influence of in vitro hydrolytic degradation on the morphology and crystallization behavior of poly(p-dioxanone)," Biomacromolecules, vol. 5, no. 2, pp. 358-370, 2004.
    [41] W. Bai, D. Chen and Q. Li, ''Study on Hydrolytic Degradation of Poly(p-Dioxanone) with High Molecular Weight in Vitro,'' Acta Polymerica Sinica, no. 1, 2009.
    [42] A. Pezzin, G. A. Van Ekenstein, C. Zavaglia, G. Ten Brinke, and E. Duek, "poly(para‐dioxanone) and poly(l‐lactic acid) blends: thermal, mechanical, and morphological properties," Journal of Applied Polymer Science, vol. 88, no. 12, pp. 2744-2755, 2003.
    [43] J. B. Zeng, Q. Y. Zhu, Y. D. Li, Z. C. Qiu, and Y. Z. Wang, "Unique crystalline/crystalline polymer blends of poly(ethylene succinate) and poly(p-dioxanone): miscibility and crystallization behaviors," The Journal of Physical Chemistry B, vol. 114, no. 46, pp. 14827-14833, 2010.
    [44] Y. Bai, P. Wang, W. Bai, L. Zhang, Q. Li, and C. Xiong, "Miscibility, Thermal and Mechanical Properties of poly(para-dioxanone)/poly(lactic-co-glycolic acid) Blends," Journal of Polymers and the Environment, vol. 23, no. 3, pp. 367-373, 2015.
    [45] M. Dias, M. C. M. Antunes, A. R. Santos, and M. I. Felisberti, "Blends of poly(3-hydroxybutyrate) and poly(p-dioxanone): miscibility, thermal stability and biocompatibility," Journal of Materials Science: Materials in Medicine, vol. 19, no. 12, pp. 3535-3544, 2008.
    [46] I. Martínez de Arenaza, N. Hernandez-Montero, E. Meaurio, and J.-R. Sarasua, "Competing Specific Interactions Investigated by Molecular Dynamics: Analysis of poly(p-dioxanone)/poly(vinylphenol) Blends," The Journal of Physical Chemistry B, vol. 117, no. 2, pp. 719-724, 2013.
    [47] N. Hernandez-Montero, E. Meaurio, K. Elmiloudi, and J.-R. Sarasua, "Novel miscible blends of poly(p-dioxanone) with poly(vinylphenol)," European Polymer Journal, vol. 48, no. 8, pp. 1455-1465, 2012.
    [48] K. Y. Huang, E. M. Woo, and S. Nagarajan, "Unique Periodic Rings Composed of Fractal-Growth Dendritic Branching in Poly(p-dioxanone)," Polymers, vol. 14, no. 4, p. 805, 2022.
    [49] Ni’mah, E. M. Woo and S. Nurkhamidah, ''Diversification of spherulite patterns in poly(ethylene succinate) crystallized with strongly interacting poly(4-vinyl phenol),'' Journal of Polymer Research, vol. 21, no. 339, 2014.
    [50] S. H. Li and E. M. Woo, "Kinetic Analysis on Effect of Poly(4-vinyl phenol) on Complex-Forming Blends of Poly(L-lactide) and Poly(D-lactide)," Polymer Journal, vol. 41, no. 5, pp. 374-382, 2009.
    [51] G. Lugito, C. Su, Y.-H. Wang, and E. M. Woo, "Nano-assembly of intertwining lamellae of opposite bending senses in poly(ethylene oxide) co-crystallizing with poly (p-vinyl phenol)," Journal of Polymer Research, vol. 24, no. 10, p. 166, 2017.
    [52] S. Y. Park, M. Park and H. H. Lee, ''Cooperative polymer gate dielectrics in organic thin-film transistors,'' Applied Physics Letters, vol. 85, p. 2283, 2004.
    [53] H. Bourara, S. Hadjout, Z. Benabdelghani, and A. Etxeberria, "Miscibility and hydrogen bonding in blends of poly(4-vinylphenol)/poly(vinyl methyl ketone)," Polymers, vol. 6, no. 11, pp. 2752-2763, 2014.
    [54] A. Soyocak, H. Kurt, D. T. Cosan, F. Saydam, I. Calis, U. Kolac, Z. O. Koroglu, I. Degirmenci, F. S. Mutlu and H. Gunes, "Tannic acid exhibits anti-inflammatory effects on formalin-induced paw edema model of inflammation in rats," Human & Experimental Toxicology, vol. 38, no. 11, pp. 1296-1301, 2019.
    [55] S. C. Wang, Y. Chen, Y. C. Wang, W. J. Wang, C. S. Yang, C. L. Tsai , M. H. Hou, H. F. Chen, Y. C. Shen, M. C. Hung, "Tannic acid suppresses SARS-CoV-2 as a dual inhibitor of the viral main protease and the cellular TMPRSS2 protease," American Journal of Cancer Research, pp. 4538–4546, 2020.
    [56] T. Ahmad, "Reviewing the Tannic Acid Mediated Synthesis of Metal Nanoparticles," Journal of Nanotechnology, vol. 2014, pp. 1-11, 2014.
    [57] Velmurugan, P., Singam, E. R., Jonnalagadda, R. R., & Subramanian, V., ''Investigation on interaction of tannic acid with type I collagen and its effect on thermal, enzymatic, and conformational stability for tissue engineering applications,'' Biopolymers, vol. 101, no. 5, pp. 471–483, 2014..
    [58] S. Gestí, B. Lotz, M. T. Casas, C. Alemán, and J. Puiggali, "Morphology and structure of poly (p-dioxanone)," European Polymer Journal, vol. 43, no. 11, pp. 4662-4674, 2007.
    [59] Y. Zheng, J. Zhou, F. Du, Y. Bao, G. Shan, L. Zhang, H. Dong and P. Pan, "Formation of Mesomorphic Polymorph, Thermal-Induced Phase Transition, and Crystalline Structure-Dependent Degradable and Mechanical Properties of Poly(p-dioxanone)," Crystal Growth & Design, vol. 19, no. 1, pp. 166-176, 2018.
    [60] 黃冠瑛, ''聚對二氧環己酮之分形分枝組裝形成週期性環帶之特殊結晶形貌,'' 碩士學位論文, 化學工程系, 國立成功大學, 台南市, 2020.
    [61] K. C. Yen and E. M. Woo, "Formation of dendrite crystals in poly(ethylene oxide) interacting with bioresourceful tannic,'' Polymer Bulletin, vol. 62, pp. 225-235, 2008.
    [62] L. T. Lee, M. C. Wu and M. H. Lee, "Novel miscible blends of biodegradable polymer and biocompatible polyphenol acquired from natural source,'' Journal of Polymer Research, vol. 20, no. 282, 2013.
    [63] D. Shan, E. Gerhard, C. Zhang, J. W. Tierney, D. Xie, Z. Liu, J. Yang, "Polymeric biomaterials for biophotonic applications," Bioactive Materials, vol. 3, no. 4, pp. 434-445, 2018.
    [64] W. Rahmayanti, ''Periodic Grating Architectures in Polymer Crystals Custom-Made with Iridescent Light Interference Properties and Mechanisms,'' 碩士學位論文, 化學工程系, 國立成功大學, 台南市, 2022.
    [65] Y.-Z. Huang, E. M. Woo, and S. Nagarajan, "Periodic Hierarchical Structures in Poly(p-dioxanone) Modulated with Miscible Diluents: Top-Surface and Interior Analyses," Industrial & Engineering Chemistry Research, 2022.
    [66] E. M. Woo, G. Lugito, J.-H. Tsai, and A. J. Müller, "Hierarchically Diminishing Chirality Effects on Lamellar Assembly in Spherulites Comprising Chiral Polymers," Macromolecules, vol. 49, no. 7, pp. 2698-2708, 2016.
    [67] G. Lugito and E. M. Woo, "Multishell Oblate Spheroid Growth in Poly(trimethylene terephthalate) Banded Spherulites," Macromolecules, vol. 50, no. 15, pp. 5898-5904, 2017.
    [68] Y. Chen et al., "Recent Advances in Opal/Inverted Opal Photonic Crystal Photocatalysts," Solar RRL, vol. 5, no. 6, 2021.

    下載圖示
    2025-08-31公開
    QR CODE