簡易檢索 / 詳目顯示

研究生: 韓新民
Han, Hsin-Min
論文名稱: 利用奈米壓印微影術製作石墨烯複材奈米陣列與金屬奈米結構應用於表面增強拉曼散射
Nanoimprinting of Graphene Composites and Gold Nanostructure and Its Application to Surface Enhanced Raman Scattering
指導教授: 林俊宏
Lin, Chun-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 89
中文關鍵詞: 氧化石墨烯奈米壓印表面增強拉曼散射
外文關鍵詞: Graphene oxide, Nanoimprint, SERS
相關次數: 點閱:111下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化石墨烯(Graphene oxide, GO)因其製程費用低廉、易於大量生產與容易進行化學修飾等優點使得GO具有巨大的潛力可製作為功能性的感測器與碳基電子元件。其中,GO圖案的製作便是其關鍵所在,唯有良好的圖案定義才能準確製作出電極或是活性區域,也才使得元件得以正常運作。回顧過去的GO圖案化方法大多侷限在微米尺度的圖案定義,若欲進一步製作更小尺度(如奈米級)的GO元件勢必將遭遇瓶頸;為此,開發一個快速、價廉的GO奈米級圖案化方法將是突破此一瓶頸的關鍵。
    在本研究中,我們藉由奈米壓印微影術製作各種奈米尺度的GO複材結構,並探討所使用的GO複合漿料、壓印壓力等條件對製作結構的影響。結果顯示,使用松油醇作為漿料的溶劑再搭配奈米壓印微影術可快速且方便地製作奈米級的GO圖案,並可獲得良好且完整的結構形貌。其中,圖案的長與寬可藉由母模的設計來定義,而結構的高度則可使用漿料的濃度來進行調控,顯示本製程方法具有三維的奈米級圖案定義能力。最後,本製程也成功製作出直徑最小為300 nm的點陣列圖案;另一方面,我們將GO材料修飾於奈米金陣列上以製作SERS基板,並使用羅丹明6G(Rhodamine 6G, R6G)來鑑別不同基板其SERS效果。結果顯示,修飾GO的奈米金基板,相較於未修飾的基板有更佳的SERS表現,其原因為GO顯示了較佳的CM機制增強,並成功藉由GO的修飾獲得三倍的拉曼增益。

    Graphene is a single layer of two-dimensional nanoscale carbon structure. It has many unique properties like excellent physics and electrical ability makes it have the potential to applicate in electronics and sensors. Among them, the lithography is the key to patterning the working area and makes it work properly. Graphene oxide (GO) can be made easily and abundantly by the Hummer’s method. In our research, we use the nanoimprint process to fabricate GO nanopattern. Here, we alter the pressure and the ink concentration to discuss the heights of structure and its morphology. Finally, we demonstrate the ability to fabricate 300 nm dots array with uniform morphology by the nanoimprint lithography.

    摘要 I 致謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 文獻回顧 4 2.1 氧化石墨烯圖案化方法 4 2.1.1 雷射直寫法 4 2.1.2 遮罩輔助法 5 2.1.3 GO漿料印刷法 7 2.1.4 軟微影術 8 2.2 氧化石墨烯應用於表面增強拉曼散射 10 第三章 研究方法 20 3.1 實驗材料 20 3.1.1 GO或GOQD複材漿料合成 23 3.1.2 AuNPs漿料合成 25 3.2 實驗設備 26 3.2.1 原子力顯微鏡(Atomic force microscope, AFM) 26 3.2.2 拉曼光譜儀 26 3.2.3 接觸角量測儀 26 3.2.4 離心機 27 3.2.5 烘箱 27 3.2.6 反應離子蝕刻機(氧電漿改質) 27 3.2.7 超音波震盪機 27 3.2.8 加熱板 27 3.3 實驗流程 27 3.3.1 奈米壓印微影術 27 3.3.2 GO材料自組裝 29 第四章 奈米壓印微影術製作石墨烯複材奈米陣列 34 4.1 前言 34 4.2 結果與討論 35 4.2.1 使用GO@DIW ink製作奈米級結構 35 4.2.2 使用GOQD@DIW ink製作奈米級結構 36 4.2.3 使用GOQD ink製作奈米級結構 39 4.2.4 使用GOQD/EC ink製作奈米級結構 43 4.3 結論 46 第五章 奈米壓印微影術製作奈米金結構應用於表面增強拉曼散射 64 5.1 前言 64 5.2 結果與討論 65 5.2.1 SERS基板製作 65 5.2.2 奈米金結構陣列應用於表面增強拉曼散射 66 5.3 結論 70 第六章 結論與展望 81 6.1 結論 81 6.2 未來展望 82 參考文獻 84

    1. Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.-B. Sun, and F.-S. Xiao, "Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction," Nano Today 5, 15-20 (2010).
    2. W. J. Hyun, E. B. Secor, M. C. Hersam, C. D. Frisbie, and L. F. Francis, "High-Resolution Patterning of Graphene by Screen Printing with a Silicon Stencil for Highly Flexible Printed Electronics," Advanced Materials 27, 109-115 (2015).
    3. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," Journal of Vacuum Science & Technology B 14, 4129-4133 (1996).
    4. L. T. Duy, D.-J. Kim, T. Q. Trung, V. Q. Dang, B.-Y. Kim, H. K. Moon, and N.-E. Lee, "High Performance Three-Dimensional Chemical Sensor Platform Using Reduced Graphene Oxide Formed on High Aspect-Ratio Micro-Pillars," Advanced Functional Materials 25, 883-890 (2015).
    5. E. B. Secor, P. L. Prabhumirashi, K. Puntambekar, M. L. Geier, and M. C. Hersam, "Inkjet Printing of High Conductivity, Flexible Graphene Patterns," The Journal of Physical Chemistry Letters 4, 1347-1351 (2013).
    6. J. Zhang, P. Hu, R. Zhang, X. Wang, B. Yang, W. Cao, Y. Li, X. He, Z. Wang, and W. O'Neill, "Soft-lithographic processed soluble micropatterns of reduced graphene oxide for wafer-scale thin film transistors and gas sensors," Journal of Materials Chemistry 22, 714-718 (2012).
    7. A. M. H. Ng, Y. Wang, W. C. Lee, C. T. Lim, K. P. Loh, and H. Y. Low, "Patterning of graphene with tunable size and shape for microelectrode array devices," Carbon 67, 390-397 (2014).
    8. V. Penmatsa, T. Kim, M. Beidaghi, H. Kawarada, L. Gu, Z. Wang, and C. Wang, "Three-dimensional graphene nanosheet encrusted carbon micropillar arrays for electrochemical sensing," Nanoscale 4, 3673-3678 (2012).
    9. S. Lawes, A. Riese, Q. Sun, N. Cheng, and X. Sun, "Printing nanostructured carbon for energy storage and conversion applications," Carbon 92, 150-176 (2015).
    10. J. Li, F. Ye, S. Vaziri, M. Muhammed, M. C. Lemme, and M. Östling, "Efficient Inkjet Printing of Graphene," Advanced Materials 25, 3985-3992 (2013).
    11. W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan, "Direct laser writing of micro-supercapacitors on hydrated graphite oxide films," Nat Nano 6, 496-500 (2011).
    12. B. W. An, K. Kim, M. Kim, S.-Y. Kim, S.-H. Hur, and J.-U. Park, "Direct Printing of Reduced Graphene Oxide on Planar or Highly Curved Surfaces with High Resolutions Using Electrohydrodynamics," Small 11, 2263-2268 (2015).
    13. R. Z. Li, R. Peng, K. D. Kihm, S. Bai, D. Bridges, U. Tumuluri, Z. Wu, T. Zhang, G. Compagnini, Z. Feng, and A. Hu, "High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes," Energy & Environmental Science 9, 1458-1467 (2016).
    14. X. Liu, T. Qian, N. Xu, J. Zhou, J. Guo, and C. Yan, "Preparation of on chip, flexible supercapacitor with high performance based on electrophoretic deposition of reduced graphene oxide/polypyrrole composites," Carbon 92, 348-353 (2015).
    15. K. Dunst, D. Jurków, and P. Jasiński, "Laser patterned platform with PEDOT–graphene composite film for NO2 sensing," Sensors and Actuators B: Chemical 229, 155-165 (2016).
    16. L. Zhang, Z. Wang, C. Xu, Y. Li, J. Gao, W. Wang, and Y. Liu, "High strength graphene oxide/polyvinyl alcohol composite hydrogels," Journal of Materials Chemistry 21, 10399-10406 (2011).
    17. D. Kang, Z. Cai, Q. Jin, and H. Zhang, "Bio-inspired composite films with integrative properties based on the self-assembly of gellan gum–graphene oxide crosslinked nanohybrid building blocks," Carbon 91, 445-457 (2015).
    18. V. H. Pham, T. T. Dang, S. H. Hur, E. J. Kim, and J. S. Chung, "Highly Conductive Poly(methyl methacrylate) (PMMA)-Reduced Graphene Oxide Composite Prepared by Self-Assembly of PMMA Latex and Graphene Oxide through Electrostatic Interaction," ACS Applied Materials & Interfaces 4, 2630-2636 (2012).
    19. T.-H. Kim, S. Shah, L. Yang, P. T. Yin, M. K. Hossain, B. Conley, J.-W. Choi, and K.-B. Lee, "Controlling Differentiation of Adipose-Derived Stem Cells Using Combinatorial Graphene Hybrid-Pattern Arrays," ACS Nano 9, 3780-3790 (2015).
    20. Q. He, H. G. Sudibya, Z. Yin, S. Wu, H. Li, F. Boey, W. Huang, P. Chen, and H. Zhang, "Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications," ACS Nano 4, 3201-3208 (2010).
    21. L. E. Delle, R. Lanche, J. K.-Y. Law, M. Weil, X. T. Vu, P. Wagner, and S. Ingebrandt, "Reduced graphene oxide micropatterns as an interface for adherent cells," physica status solidi (a) 210, 975-982 (2013).
    22. T. K. Das and S. Prusty, "Graphene-Based Polymer Composites and Their Applications," Polymer-Plastics Technology and Engineering 52, 319-331 (2013).
    23. Y. T. Liang and M. C. Hersam, "Highly Concentrated Graphene Solutions via Polymer Enhanced Solvent Exfoliation and Iterative Solvent Exchange," Journal of the American Chemical Society 132, 17661-17663 (2010).
    24. M. Cittadini, M. Bersani, F. Perrozzi, L. Ottaviano, W. Wlodarski, and A. Martucci, "Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor," Carbon 69, 452-459 (2014).
    25. Y. R. Choi, Y.-G. Yoon, K. S. Choi, J. H. Kang, Y.-S. Shim, Y. H. Kim, H. J. Chang, J.-H. Lee, C. R. Park, S. Y. Kim, and H. W. Jang, "Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing," Carbon 91, 178-187 (2015).
    26. E. Jabari and E. Toyserkani, "Micro-scale aerosol-jet printing of graphene interconnects," Carbon 91, 321-329 (2015).
    27. S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, "Direct Nanoimprinting of Metal Nanoparticles for Nanoscale Electronics Fabrication," Nano Letters 7, 1869-1877 (2007).
    28. I. Park, S. H. Ko, H. Pan, C. P. Grigoropoulos, A. P. Pisano, J. M. J. Fréchet, E. S. Lee, and J. H. Jeong, "Nanoscale Patterning and Electronics on Flexible Substrate by Direct Nanoimprinting of Metallic Nanoparticles," Advanced Materials 20, 489-496 (2008).
    29. C.-C. Liang, M.-Y. Liao, W.-Y. Chen, T.-C. Cheng, W.-H. Chang, and C.-H. Lin, "Plasmonic metallic nanostructures by direct nanoimprinting of gold nanoparticles," Opt. Express 19, 4768-4776 (2011).
    30. E. B. Secor, S. Lim, H. Zhang, C. D. Frisbie, L. F. Francis, and M. C. Hersam, "Gravure Printing of Graphene for Large-area Flexible Electronics," Advanced Materials 26, 4533-4538 (2014).
    31. V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, "Highly confined tunable mid-infrared plasmonics in graphene nanoresonators," Nano Letters 13, 2541-2547 (2013).
    32. N. H. Kim, B. J. Kim, Y. Ko, J. H. Cho, and S. T. Chang, "Surface Energy Engineered, High-Resolution Micropatterning of Solution-Processed Reduced Graphene Oxide Thin Films," Advanced Materials 25, 894-898 (2013).
    33. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, "Mid-infrared plasmonic biosensing with graphene," Science 349, 165-168 (2015).
    34. A. K. Geim, "Graphene: Status and Prospects," Science 324, 1530-1534 (2009).
    35. K. K. Sadasivuni, A. Kafy, L. Zhai, H.-U. Ko, S. Mun, and J. Kim, "Transparent and Flexible Cellulose Nanocrystal/Reduced Graphene Oxide Film for Proximity Sensing," Small 11, 994-1002 (2015).
    36. C. Wu, Q. Cheng, S. Sun, and B. Han, "Templated patterning of graphene oxide using self-assembled monolayers," Carbon 50, 1083-1089 (2012).
    37. C.-Y. Lin, K.-M. Hsu, H.-C. Huang, T.-F. Yeh, H.-Y. Chang, C.-H. Lien, H. Teng, and S.-J. Chen, "Multiphoton fabrication of freeform polymer microstructures containing graphene oxide and reduced graphene oxide nanosheets," Opt. Mater. Express 5, 218-226 (2015).
    38. Y.-C. Li, T.-F. Yeh, H.-C. Huang, H.-Y. Chang, C.-Y. Lin, L.-C. Cheng, C.-Y. Chang, H. Teng, and S.-J. Chen, "Graphene oxide-based micropatterns via high-throughput multiphoton-induced reduction and ablation," Opt. Express 22, 19726-19734 (2014).
    39. S. Luo, P. T. Hoang, and T. Liu, "Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays," Carbon 96, 522-531 (2016).
    40. S. Pang, H. N. Tsao, X. Feng, and K. Müllen, "Patterned Graphene Electrodes from Solution-Processed Graphite Oxide Films for Organic Field-Effect Transistors," Advanced Materials 21, 3488-3491 (2009).
    41. H. Y. Jang, H.-J. Jang, D. K. Park, W. S. Yun, and S. Park, "Fabrication of shape-controlled reduced graphene oxide nanorings by Au@Pt nanoring lithography," Nanoscale 7, 460-464 (2015).
    42. Y. Tu, T. Utsunomiya, T. Ichii, and H. Sugimura, "Vacuum-Ultraviolet Promoted Oxidative Micro Photoetching of Graphene Oxide," ACS Applied Materials & Interfaces 8, 10627-10635 (2016).
    43. Y. Xue, L. Zhu, H. Chen, J. Qu, and L. Dai, "Multiscale patterning of graphene oxide and reduced graphene oxide for flexible supercapacitors," Carbon 92, 305-310 (2015).
    44. M. J. Allen, V. C. Tung, L. Gomez, Z. Xu, L.-M. Chen, K. S. Nelson, C. Zhou, R. B. Kaner, and Y. Yang, "Soft Transfer Printing of Chemically Converted Graphene," Advanced Materials 21, 2098-2102 (2009).
    45. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chemical Physics Letters 26, 163-166 (1974).
    46. D. L. Jeanmaire and R. P. Van Duyne, "Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 84, 1-20 (1977).
    47. A. K. Kalkan and S. J. Fonash, "Laser-activated surface-enhanced Raman scattering substrates capable of single molecule detection," Applied Physics Letters 89, 233103 (2006).
    48. J. R. Lombardi and R. L. Birke, "A Unified Approach to Surface-Enhanced Raman Spectroscopy," The Journal of Physical Chemistry C 112, 5605-5617 (2008).
    49. M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, "Rationally designed nanostructures for surface-enhanced Raman spectroscopy," Chemical Society Reviews 37, 885-897 (2008).
    50. H. Ko, S. Singamaneni, and V. V. Tsukruk, "Nanostructured Surfaces and Assemblies as SERS Media," Small 4, 1576-1599 (2008).
    51. S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, "Tailoring plasmonic substrates for surface enhanced spectroscopies," Chemical Society Reviews 37, 898-911 (2008).
    52. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, "Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption," ACS Nano 2, 707-718 (2008).
    53. C. Liusman, S. Li, X. Chen, W. Wei, H. Zhang, G. C. Schatz, F. Boey, and C. A. Mirkin, "Free-Standing Bimetallic Nanorings and Nanoring Arrays Made by On-Wire Lithography," ACS Nano 4, 7676-7682 (2010).
    54. L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, "Designing, fabricating, and imaging Raman hot spots," Proceedings of the National Academy of Sciences of the United States of America 103, 13300-13303 (2006).
    55. C.-Y. Teng, T.-F. Yeh, K.-I. Lin, S.-J. Chen, M. Yoshimura, and H. Teng, "Synthesis of graphene oxide dots for excitation-wavelength independent photoluminescence at high quantum yields," Journal of Materials Chemistry C 3, 4553-4562 (2015).
    56. G. Goncalves, P. A. A. P. Marques, C. M. Granadeiro, H. I. S. Nogueira, M. K. Singh, and J. Grácio, "Surface Modification of Graphene Nanosheets with Gold Nanoparticles: The Role of Oxygen Moieties at Graphene Surface on Gold Nucleation and Growth," Chemistry of Materials 21, 4796-4802 (2009).
    57. X. Ma, Q. Qu, Y. Zhao, Z. Luo, Y. Zhao, K. W. Ng, and Y. Zhao, "Graphene oxide wrapped gold nanoparticles for intracellular Raman imaging and drug delivery," Journal of Materials Chemistry B 1, 6495-6500 (2013).
    58. J. Song, L. Xu, R. Xing, Q. Li, C. Zhou, D. Liu, and H. Song, "Synthesis of Au/Graphene Oxide Composites for Selective and Sensitive Electrochemical Detection of Ascorbic Acid," Scientific Reports 4, 7515 (2014).
    59. G. Lu, H. Li, C. Liusman, Z. Yin, S. Wu, and H. Zhang, "Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules," Chemical Science 2, 1817-1821 (2011).
    60. X. Liang, B. Liang, Z. Pan, X. Lang, Y. Zhang, G. Wang, P. Yin, and L. Guo, "Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids," Nanoscale 7, 20188-20196 (2015).
    61. L. Xiong, P. Chen, and Q. Zhou, "Adhesion promotion between PDMS and glass by oxygen plasma pre-treatment," Journal of Adhesion Science and Technology 28, 1046-1054 (2014).
    62. C.-C. Liang, W.-H. Chang, and C.-H. Lin, "Nanotransfer printing of plasmonic nano-pleat arrays with ultra-reduced nanocavity width using perfluoropolyether molds," Journal of Materials Chemistry C (2016).
    63. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, "Improved Pattern Transfer in Soft Lithography Using Composite Stamps," Langmuir 18, 5314-5320 (2002).
    64. J. Li, F. Ye, S. Vaziri, M. Muhammed, M. C. Lemme, and M. Östling, "A simple route towards high-concentration surfactant-free graphene dispersions," Carbon 50, 3113-3116 (2012).
    65. F. Liu, M. H. Jang, H. D. Ha, J. H. Kim, Y. H. Cho, and T. S. Seo, "Facile Synthetic Method for Pristine Graphene Quantum Dots and Graphene Oxide Quantum Dots: Origin of Blue and Green Luminescence," Advanced Materials 25, 3657-3662 (2013).
    66. Z. Fan, R. Kanchanapally, and P. C. Ray, "Hybrid Graphene Oxide Based Ultrasensitive SERS Probe for Label-Free Biosensing," The Journal of Physical Chemistry Letters 4, 3813-3818 (2013).
    67. C. W. Chang, M. H. Hon, and I. C. Leu, "Patterns of Solution-Processed Graphene Oxide Produced by a Transfer Printing Method," Journal of The Electrochemical Society 159, H605-H609 (2012).

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE