| 研究生: |
張嘉珊 Chang, Chia-Shan |
|---|---|
| 論文名稱: | |
| 指導教授: |
鄭沐政
Cheng, Mu-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 密度泛函數理論 、金屬卟啉 、四氮錯合金屬之石墨烯 、碳氫鍵活化 |
| 外文關鍵詞: | Metal-porphyrins, Metal-N4-functionalized graphenes, Metal oxo, C-H activation, Density functional theory |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今社會經濟發展快速,對於能源的需求也越來越大,因此工業上致力於利用催化劑來轉換能源,將低經濟價值的化合物轉為高經濟價值的化合物,其中常見的催化劑為金屬卟啉和四氮錯合金屬之石墨烯,然而這兩種相似結構的催化劑在進行催化反應時的環境卻有所不同:金屬卟啉為勻相催化劑,而四氮錯合金屬之石墨烯為異相催化劑,因此必須要比較這兩種催化劑的反應性來選擇出適當的催化劑。本篇論文主要探討這兩種催化劑中心金屬形成metal oxo後對於催化反應的反應性,並且以烷類氧化為醇類的反應為依據,比較出哪一種催化劑的反應性較好,並解釋其原因。
本篇論文中採用的軟體Jaguar 8.4為一種計算小分子的軟體,因此需要對四氮錯合金屬之石墨烯找出適當描述此材料的模型大小,經由計算結果得知以金屬接四氮的核為中心往外擴散兩圈時會達到尺寸收斂(size converge),因此本論文採用金屬接四氮的核為中心往外擴散兩圈為四氮錯合金屬之石墨烯的模型大小。
以鐵這種過渡金屬為中心金屬再加上不同取代基的金屬卟啉和四氮錯合金屬之石墨烯進行C-H activation和苯的氧化反應,結果發現不同取代基的金屬卟啉在進行催化反應時反應性都比四氮錯合金屬之石墨烯強,而鐵金屬卟啉受取代基效應的影響比四氮錯合鐵之石墨烯大。接著透過比較鐵金屬卟啉和四氮錯合鐵之石墨烯形成metal oxo後的π*軌域能量,發現鐵金屬卟啉形成metal oxo後的π*軌域能量比四氮錯合鐵之石墨烯來得穩定,成功解釋鐵金屬卟啉比四氮錯合鐵之石墨烯容易進行催化反應,又以氧化能力、hydrogen bonding energy和hydrogen affinity應證鐵金屬卟啉較容易進行催化反應。
本篇論文得出鐵金屬卟啉比四氮錯合鐵之石墨烯較適合作為熱催化反應的催化劑,並成功解釋及驗證鐵金屬卟啉的反應性比四氮錯合鐵之石墨烯強。
With the development of economic and technology, energy needs have been important issues for society. Therefore, using catalysts to do chemical transformation is necessary for industrial process. Two of them are metal-porphyrins and metal-N4-functionalized graphenes. However, these two catalysts require different environment when conducting catalytic reaction. One is homogeneous catalyst, the other is heterogeneous catalyst. This study will compare the reactivity between metal-porphyrins and metal-N4-functionalized graphenes by conducting oxidation reaction and explain which is the best catalyst. In this study, we use Jaguar 8.4 to compute electronic energies of each reaction geometry with density functional theory. As for the model of metal-N4-functionalized graphenes, the size will converge with two circles surrounding the metal center.
We choose iron as metal combined with several axial ligand in metal-porphyrins and metal-N4-functionalized graphenes, catalyzing C-H activation and benzene oxidation. For both reactions, the reactivity of iron-porphyrins is better than iron-N4-functionalized graphenes. In addition, the ligand effect of iron-porphyrins is stronger than iron-N4-functionalized graphenes. In order to explain this result, we compare the energy of π* orbital between iron oxo-porphyrins and iron oxo-N4-functionalized graphenes. We find that the π* orbitals of iron oxo-porphyrins are more stable than iron oxo-N4-functionalized graphenes. We also analyze oxidation ability, hydrogen bonding energy and hydrogen affinity. From the analysis, we can conclude that iron-porphyrins are the better catalysts for thermocatalytic reactions.
1. Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H., Heme-containing oxygenases. Chemical reviews 1996, 96 (7), 2841-2888.
2. Groves, J. T., The bioinorganic chemistry of iron in oxygenases and supramolecular assemblies. Proceedings of the National Academy of Sciences 2003, 100 (7), 3569-3574.
3. De Montellano, P. R. O., Cytochrome P450: structure, mechanism, and biochemistry. Springer Science & Business Media: 2005.
4. Denisov, I. G.; Makris, T. M.; Sligar, S. G.; Schlichting, I., Structure and chemistry of cytochrome P450. Chemical reviews 2005, 105 (6), 2253-2278.
5. Toganoh, M.; Furuta, H., Handbook of Porphyrin Science, ed. KM Kadish, KM Smith and R. Guilard. World Scientific, Singapore: 2010.
6. Ortiz de Montellano, P. R., Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chemical reviews 2010, 110 (2), 932-948.
7. O'Reilly, E.; Köhler, V.; Flitsch, S. L.; Turner, N. J., Cytochromes P450 as useful biocatalysts: addressing the limitations. Chemical Communications 2011, 47 (9), 2490-2501.
8. Grogan, G., Cytochromes P450: exploiting diversity and enabling application as biocatalysts. Current opinion in chemical biology 2011, 15 (2), 241-248.
9. Watanabe, Y.; Nakajima, H.; Ueno, T., Reactivities of oxo and peroxo intermediates studied by hemoprotein mutants. Accounts of chemical research 2007, 40 (7), 554-562.
10. Sainna, M. A.; Kumar, S.; Kumar, D.; Fornarini, S.; Crestoni, M. E.; de Visser, S. P., A comprehensive test set of epoxidation rate constants for iron (IV)–oxo porphyrin cation radical complexes. Chemical science 2015, 6 (2), 1516-1529.
11. Johnston, J. B.; Kells, P. M.; Podust, L. M.; de Montellano, P. R. O., Biochemical and structural characterization of CYP124: A methyl-branched lipid ω-hydroxylase from Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences 2009, 106 (49), 20687-20692.
12. Groves, J. T., Cytochrome P450 enzymes: Understanding the biochemical hieroglyphs. F1000Research 2015, 4 (178), 178.
13. Groves, J. T.; Nemo, T. E.; Myers, R. S., Hydroxylation and epoxidation catalyzed by iron-porphine complexes. Oxygen transfer from iodosylbenzene. Journal of the American Chemical Society 1979, 101 (4), 1032-1033.
14. Groves, J. T.; Nemo, T. E., Aliphatic hydroxylation catalyzed by iron porphyrin complexes. Journal of the American Chemical Society 1983, 105 (20), 6243-6248.
15. Chin, D.-H.; La Mar, G. N.; Balch, A. L., Role of ferryl (FeO2+) complexes in oxygen atom transfer reactions. Mechanism of iron (II) porphyrin catalyzed oxygenation of triphenylphosphine. Journal of the American Chemical Society 1980, 102 (18), 5945-5947.
16. Nam, W.; Park, S.-E.; Lim, I. K.; Lim, M. H.; Hong, J.; Kim, J., First direct evidence for stereospecific olefin epoxidation and alkane hydroxylation by an oxoiron (IV) porphyrin complex. Journal of the American Chemical Society 2003, 125 (48), 14674-14675.
17. Groves, J. T.; Kruper Jr, W. J.; Haushalter, R. C., Hydrocarbon oxidations with oxometalloporphinates. Isolation and reactions of a (porphinato) manganese (V) complex. Journal of the American Chemical Society 1980, 102 (20), 6375-6377.
18. Nam, W.; Kim, I.; Kim, Y.; Kim, C., Biomimetic alkane hydroxylation by cobalt (iii) porphyrin complex and m-chloroperbenzoic acid. Chemical Communications 2001, (14), 1262-1263.
19. Wang, Y.; Mao, J.; Meng, X.; Yu, L.; Deng, D.; Bao, X., Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chemical reviews 2018, 119 (3), 1806-1854.
20. Zhang, M.; Wang, Y.-G.; Chen, W.; Dong, J.; Zheng, L.; Luo, J.; Wan, J.; Tian, S.; Cheong, W.-C.; Wang, D., Metal (hydr) oxides@ polymer core–shell strategy to metal single-atom materials. Journal of the American Chemical Society 2017, 139 (32), 10976-10979.
21. Liu, W.; Zhang, L.; Liu, X.; Liu, X.; Yang, X.; Miao, S.; Wang, W.; Wang, A.; Zhang, T., Discriminating catalytically active FeN x species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond. Journal of the American Chemical Society 2017, 139 (31), 10790-10798.
22. Deng, D.; Chen, X.; Yu, L.; Wu, X.; Liu, Q.; Liu, Y.; Yang, H.; Tian, H.; Hu, Y.; Du, P., A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Science advances 2015, 1 (11), e1500462.
23. Cui, X.; Li, H.; Wang, Y.; Hu, Y.; Hua, L.; Li, H.; Han, X.; Liu, Q.; Yang, F.; He, L., Room-temperature methane conversion by graphene-confined single iron atoms. Chem 2018, 4 (8), 1902-1910.
24. Liu, W.; Zhang, L.; Yan, W.; Liu, X.; Yang, X.; Miao, S.; Wang, W.; Wang, A.; Zhang, T., Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chemical science 2016, 7 (9), 5758-5764.
25. Liu, W.; Chen, Y.; Qi, H.; Zhang, L.; Yan, W.; Liu, X.; Yang, X.; Miao, S.; Wang, W.; Liu, C., A Durable Nickel Single‐Atom Catalyst for Hydrogenation Reactions and Cellulose Valorization under Harsh Conditions. Angewandte Chemie 2018, 130 (24), 7189-7193.
26. Zhou, P.; Jiang, L.; Wang, F.; Deng, K.; Lv, K.; Zhang, Z., High performance of a cobalt–nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives. Science advances 2017, 3 (2), e1601945.
27. Chen, W.; Pei, J.; He, C. T.; Wan, J.; Ren, H.; Zhu, Y.; Wang, Y.; Dong, J.; Tian, S.; Cheong, W. C., Rational Design of Single Molybdenum Atoms Anchored on N‐Doped Carbon for Effective Hydrogen Evolution Reaction. Angewandte Chemie International Edition 2017, 56 (50), 16086-16090.
28. Han, Y.; Wang, Y.-G.; Chen, W.; Xu, R.; Zheng, L.; Zhang, J.; Luo, J.; Shen, R.-A.; Zhu, Y.; Cheong, W.-C., Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. Journal of the American Chemical Society 2017, 139 (48), 17269-17272.
29. Liang, H.-W.; Brüller, S.; Dong, R.; Zhang, J.; Feng, X.; Müllen, K., Molecular metal–N x centres in porous carbon for electrocatalytic hydrogen evolution. Nature communications 2015, 6, 7992.
30. Wu, H.; Li, H.; Zhao, X.; Liu, Q.; Wang, J.; Xiao, J.; Xie, S.; Si, R.; Yang, F.; Miao, S., Highly doped and exposed Cu (I)–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries. Energy & Environmental Science 2016, 9 (12), 3736-3745.
31. Li, X.; Bi, W.; Chen, M.; Sun, Y.; Ju, H.; Yan, W.; Zhu, J.; Wu, X.; Chu, W.; Wu, C., Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. Journal of the American Chemical Society 2017, 139 (42), 14889-14892.
32. Yang, H. B.; Hung, S.-F.; Liu, S.; Yuan, K.; Miao, S.; Zhang, L.; Huang, X.; Wang, H.-Y.; Cai, W.; Chen, R., Atomically dispersed Ni (I) as the active site for electrochemical CO 2 reduction. Nature Energy 2018, 3 (2), 140-147.
33. Fei, H.; Dong, J.; Arellano-Jiménez, M. J.; Ye, G.; Kim, N. D.; Samuel, E. L.; Peng, Z.; Zhu, Z.; Qin, F.; Bao, J., Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nature communications 2015, 6 (1), 1-8.
34. Zhang, C.; Sha, J.; Fei, H.; Liu, M.; Yazdi, S.; Zhang, J.; Zhong, Q.; Zou, X.; Zhao, N.; Yu, H., Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. Acs Nano 2017, 11 (7), 6930-6941.
35. Ye, R.; Dong, J.; Wang, L.; Mendoza-Cruz, R.; Li, Y.; An, P.-F.; Yacamán, M. J.; Yakobson, B. I.; Chen, D.; Tour, J. M., Manganese deception on graphene and implications in catalysis. Carbon 2018, 132, 623-631.
36. Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D., Isolated Ni single atoms in graphene nanosheets for high-performance CO 2 reduction. Energy & Environmental Science 2018, 11 (4), 893-903.
37. Fei, H.; Dong, J.; Feng, Y.; Allen, C. S.; Wan, C.; Volosskiy, B.; Li, M.; Zhao, Z.; Wang, Y.; Sun, H., General synthesis and definitive structural identification of MN 4 C 4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis 2018, 1 (1), 63-72.
38. Bi, W.; Li, X.; You, R.; Chen, M.; Yuan, R.; Huang, W.; Wu, X.; Chu, W.; Wu, C.; Xie, Y., Surface immobilization of transition metal ions on nitrogen‐doped graphene realizing high‐efficient and selective CO2 reduction. Advanced Materials 2018, 30 (18), 1706617.
39. Cui, X.; Xiao, J.; Wu, Y.; Du, P.; Si, R.; Yang, H.; Tian, H.; Li, J.; Zhang, W. H.; Deng, D., A graphene composite material with single cobalt active sites: a highly efficient counter electrode for dye‐sensitized solar cells. Angewandte Chemie International Edition 2016, 55 (23), 6708-6712.
40. Liu, D.; Wu, C.; Chen, S.; Ding, S.; Xie, Y.; Wang, C.; Wang, T.; Haleem, Y. A.; ur Rehman, Z.; Sang, Y., In situ trapped high-density single metal atoms within graphene: Iron-containing hybrids as representatives for efficient oxygen reduction. Nano Research 2018, 11 (4), 2217-2228.
41. Zhang, C.; Yang, S.; Wu, J.; Liu, M.; Yazdi, S.; Ren, M.; Sha, J.; Zhong, J.; Nie, K.; Jalilov, A. S., Electrochemical CO2 Reduction with Atomic Iron‐Dispersed on Nitrogen‐Doped Graphene. Advanced Energy Materials 2018, 8 (19), 1703487.
42. Deng, D.; Yu, L.; Pan, X.; Wang, S.; Chen, X.; Hu, P.; Sun, L.; Bao, X., Size effect of graphene on electrocatalytic activation of oxygen. Chemical communications 2011, 47 (36), 10016-10018.
43. Wang, S.; Li, H.; He, M.; Cui, X.; Hua, L.; Li, H.; Xiao, J.; Yu, L.; Rajan, N. P.; Xie, Z., Room-temperature conversion of ethane and the mechanism understanding over single iron atoms confined in graphene. Journal of Energy Chemistry 2019, 36, 47-50.
44. Kang, Y.; Chen, H.; Jeong, Y. J.; Lai, W.; Bae, E. H.; Shaik, S.; Nam, W., Enhanced Reactivities of Iron (IV)‐Oxo Porphyrin π‐Cation Radicals in Oxygenation Reactions by Electron‐Donating Axial Ligands. Chemistry–A European Journal 2009, 15 (39), 10039-10046.
45. Bochevarov, A. D.; Harder, E.; Hughes, T. F.; Greenwood, J. R.; Braden, D. A.; Philipp, D. M.; Rinaldo, D.; Halls, M. D.; Zhang, J.; Friesner, R. A., Jaguar: A high‐performance quantum chemistry software program with strengths in life and materials sciences. International Journal of Quantum Chemistry 2013, 113 (18), 2110-2142.
46. Che, C.-M.; Lo, V. K.-Y.; Zhou, C.-Y.; Huang, J.-S., Selective functionalisation of saturated C–H bonds with metalloporphyrin catalysts. Chemical Society Reviews 2011, 40 (4), 1950-1975.
47. Ye, S.; Geng, C.-Y.; Shaik, S.; Neese, F., Electronic structure analysis of multistate reactivity in transition metal catalyzed reactions: the case of C–H bond activation by non-heme iron (IV)–oxo cores. Physical Chemistry Chemical Physics 2013, 15 (21), 8017-8030.
48. Geng, C.; Ye, S.; Neese, F., Analysis of reaction channels for alkane hydroxylation by nonheme iron (IV)–oxo complexes. Angewandte Chemie International Edition 2010, 49 (33), 5717-5720.
49. Shaik, S.; Hirao, H.; Kumar, D., Reactivity of High-Valent Iron–Oxo Species in Enzymes and Synthetic Reagents: A Tale of Many States. 2007, 40 (7), 532-542.
50. Hirao, H.; Kumar, D.; Que, L.; Shaik, S., Two-State Reactivity in Alkane Hydroxylation by Non-Heme Iron−Oxo Complexes. Journal of the American Chemical Society 2006, 128 (26), 8590-8606.
51. Hansch, C.; Leo, A.; Taft, R. W., A survey of Hammett substituent constants and resonance and field parameters. Chemical Reviews 1991, 91 (2), 165-195.
52. De Visser, S. P.; Shaik, S., A Proton-Shuttle Mechanism Mediated by the Porphyrin in Benzene Hydroxylation by Cytochrome P450 Enzymes. Journal of the American Chemical Society 2003, 125 (24), 7413-7424.
53. Mukherjee, A.; Pattanayak, S.; Sen Gupta, S.; Vanka, K., What drives the H-abstraction reaction in bio-mimetic oxoiron-bTAML complexes? A computational investigation. Physical Chemistry Chemical Physics 2018, 20 (20), 13845-13850.
54. Gosser, D. K., Cyclic voltammetry: simulation and analysis of reaction mechanisms. VCH New York: 1993; Vol. 43.
55. Tyo, E. C.; Yin, C.; Di Vece, M.; Qian, Q.; Kwon, G.; Lee, S.; Lee, B.; DeBartolo, J. E.; Seifert, S. n.; Winans, R. E., Oxidative dehydrogenation of cyclohexane on cobalt oxide (Co3O4) nanoparticles: The effect of particle size on activity and selectivity. ACS Catalysis 2012, 2 (11), 2409-2423.
56. Atzkern, S.; Borisenko, S.; Knupfer, M.; Golden, M.; Fink, J.; Yaresko, A.; Antonov, V.; Klemm, M.; Horn, S., Valence-band excitations in V 2 O 5. Physical Review B 2000, 61 (19), 12792.
57. Fu, G.; Chen, Z.-N.; Xu, X.; Wan, H.-L., Understanding the Reactivity of the Tetrahedrally Coordinated High-Valence d0 Transition Metal Oxides toward the C− H Bond Activation of Alkanes: A Cluster Model Study. The Journal of Physical Chemistry A 2008, 112 (4), 717-721.
58. Latimer, A. A.; Kulkarni, A. R.; Aljama, H.; Montoya, J. H.; Yoo, J. S.; Tsai, C.; Abild-Pedersen, F.; Studt, F.; Nørskov, J. K., Understanding trends in C–H bond activation in heterogeneous catalysis. Nature materials 2017, 16 (2), 225-229.
校內:2025-07-01公開