| 研究生: |
陳明杰 Chen, Ming-Jie |
|---|---|
| 論文名稱: |
添加Ba2+離子對Ce0.5Zr0.5O2觸媒粉末相分離及儲氧特性的影響 Effects of Ba2+ addition on phase separation and OSC properties of Ce0.5Zr0.5O2 catalytic powders |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 儲氧特性 、Ce0.5Zr0.5O2觸媒粉末 、Ba2+離子 |
| 外文關鍵詞: | Ba2+, Ce0.5Zr0.5O2 catalytic powders, OSC |
| 相關次數: | 點閱:60 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Ce0.5Zr0.5O2觸媒粉末因其具有優異之儲氧性質(Oxygen storage capacity, OSC),在汽車觸媒轉換器中扮演相當重要的角色。但Ce0.5Zr0.5O2在高溫經過長時間的持溫後會產生相分離的現象,形成富Ce相和富Zr相,而使儲氧性質劣化。本研究以化學共沉法製備Ce0.5Zr0.5O2膠體粉末,經過700 ℃的煅燒,持溫2小時,得到Ce0.5Zr0.5O2的奈米觸媒粉末,再以含浸法加入不同添加量鋇離子後,以1000 ℃持溫2小時做熱處理,觀察添加鋇對於Ce0.5Zr0.5O2相分離的影響。由XRD圖譜發現,添加鋇到Ce0.5Zr0.5O2之後,Ce0.5Zr0.5O2的富鋯相變少,而且鋇會和Ce0.5Zr0.5O2中的Zr產生BaZrO3二次相,當BaZrO3產生後,粉末的比表面積上升,同時粒徑大幅變小,顯示BaZrO3能夠阻礙Ce0.5Zr0.5O2的凝聚成長,也抑制Ce0.5Zr0.5O2的相分離,但是添加過多的鋇,反而造成粉末的凝聚,使比表面積下降。OSC的結果顯示,添加微量的鋇有助於改善Ce0.5Zr0.5O2的儲氧能力,且鋇添加量為5wt%時,Ce0.5Zr0.5O2的儲氧能力最大。
Ce0.5Zr0.5O2 powders play an important role in three-way catalysts for its outstanding oxygen storage capacity. However, Ce0.5Zr0.5O2 phase would separate into Ce-rich phase and Zr-rich phase after high temperature calcinations, which result in the degradation of OSC properties. In this study, the Ce0.5Zr0.5O2 gels were synthesized by the co-precipitation method, and calcined at 700℃ for 2 h to obtain the Ce0.5Zr0.5O2 powders. Then, different amounts of Ba2+ ions were introduced into Ce0.5Zr0.5O2 powders using impregnation method and subsequently calcined at 1000℃ for 2 h to obtain BCZ series powders. The effects of Ba2+ ions on the phase development, texture and oxygen storage capacity of Ce0.5Zr0.5O2 were investigated. The XRD pattern indicated that Ba2+ ions would react with ZrO2 to form BaZrO3 and the XRD peak intensity of Zr-rich phase which occurred due to the phase separation of Ce0.5Zr0.5O2 phase decreased after adding Ba2+ ions into Ce0.5Zr0.5O2. The specific surface area of the powders increased and the particle size of the powders substantially decreased after the formation of BaZrO3 (Ba content = 1 wt%). It revealed that BaZrO3 could inhibit the occurrence of agglomeration and phase separation of the Ce0.5Zr0.5O2 particles at the same time. However, adding too much barium (> 5 wt%) resulted in the occurrence of agglomeration, which decreased the specific surface area of the powders. The OSC results showed that doping a little amount of barium (0.5~5 wt%) would improve the oxygen storage capacity of the Ce0.5Zr0.5O2. Ce0.5Zr0.5O2 had the maximum OSC performance due to the formation of active oxygen interfaces between Ce0.5Zr0.5O2 and BaZrO3 when the addition of barium increased to 5 wt%.
1.G. Vlaic, R.D. Monte, P. Fornasiero, E. Fonda, J. Kaspar and M. Graziani, "The CeO2-ZrO2 system: redox properties and structural relationships," Catalysis and Automotive Pollution Control IV Stud. Surf. Sci. Catal., 116, 185, 1998.
2.G. Balducci, P. Fornasiero, R.D. Monte, J. Kaspar, S. Meriani, M. Graziani, “An unusual promotion of the redox behaviour of CeO2-ZrO2 solid solutions upon sintering at high temperatures,” Catalysis Letters, 33, 193-200, 1995.
3.R.D. Monte, J. Kaspar, “Nanostructured CeO2-ZrO2 mixed oxides,” Journal of Materials Chemistry, 15, 633-648, 2005.
4.M.H. Yao, R.J. Baird, F.W. Kunz, T.E. Hoost, “An XRD and TEM investigation of the structure of alumina-supported ceria-zirconia,” Journal of Catalysis, 166, 67-74, 1997.
5.K. Kenevey, F. Valdivieso, M. Soustelle, M. Pijolat, “Thermal stability of Pd or Pt loaded Ce0.68Zr0.32O2 and Ce0.50Zr0.50O2 catalyst materials under oxidising conditions,” Applied Catalysis B: Environmental, 29, 93-101, 2001.
6.F. Zhang, C.H. Chen, J.C. Hanson, R.D. Robinson, I.P. Herman, S.W. Chan, “Phases in ceria-zirconia binary oxide (1-x)CeO2-xZrO2 nanoparticles: the effect of particle size,” Journal of the American Ceramic Society, 89, 1028-1036, 2006.
7.M. Ozawa, M. Kimura, A. Isogai, “The application of Ce-Zr oxide solid solution to oxygen storage promoters in automotive catalysts.” Journal of Alloys and Compounds, 193, 73-75, 1993.
8.T. Murota, T. Hasegawa, S. Aozasa, H. Matsui, M. Motoyama, “Production method of cerium oxide with high storage capacity of oxygen and its mechanism.” Journal of Alloys and Compounds, 193, 298-299,1993.
9.T. Yamashita, S. Takeshima, T. Tanaka, “NOx absorbent and absorption reduction-type NOx purifying catalyst,” United States Patent, US7081431B2, 2006.
10.K. Suga, M. Nakamura, “Catalyst system for purifying oxygen rich exhaust gas,” United States Patent, US6395675B1, 2002.
11.L. Mussmann, D. Lindner, M. Votsmeier, E. Lox, T. Kreuzer, “Single layer high performance catalyst,” United States Patent, US6524992B2, 2003.
12.C.Z. Wan, J.C. Dettling, “High temperature catalyst compositions for internal combustion engine,” United States Patent, US4624940, 1986.
13.T. Yamada, M. Funabiki, “Process for producing a catalyst for purifying exhaust gases from internal combustion engines,” United States Patent, US4965243, 1990.
14.M. Deeba, J.J. Steger, H.N. Rabinowitz, J.S. Foong, “Layered catalyst composite,” United States Patent, US6764665B2, 2004.
15.C.L. Chen, “ Study on reaction kinetics of volatile organics by catalytic incineration using Pt catalyst,” M. S. Thesis, Graduate Inst. of Environ. Eng., National Sun Yet Sen Univ., Kaohsiung, Taiwan, R.O.C., 1993.
16.M. Taniguchi, H. Tanaka, M. Uenishi, I. Tan, Y. Nishihata, J. Mizuki, H. Suzuki, K. Narita, A. Hirai, M. Kimura, “The self-regenerative Pd-, Rh-, and Pt-perovskite catalysts,” Topics in Catalysis, 42-43, 367-371, 2007.
17.H. Tanaka, “An intelligent catalyst: the self-regenerative palladium-perovskite catalyst for automotive emissions control,” Catalysis Surveys from Asia, 9, 63-74, 2005.
18.Y. Nishihata, J. Mizuki, H. Tanaka, M. Uenishi, M. Kimura, “Self-regeneration of palladium-perovskite catalysts in modern automobiles,” Journal of Physics and Chemistry of Solids, 66, 274-282, 2005.
19.J. Li, U.G. Singh, J.W. Bennett, K. Page, J. Weaver, J.P. Zhang, T. Proffen, A.M. Rappe, S.L. Scott, R. Seshadri, “BaCe1-xPdxO3-δ (0≦x≦0.1): redox controlled ingress and egress of palladium in a perovskite,” Chemistry of Materials, 19, 1418–1426, 2007.
20.李強, 陳祥, 李言祥, 汽車尾氣淨化器載體及塗層的研究進展, 表面技術, 30(4), 23-27, 2001(8).
21.王奕凱, 邱宏明, 李秉傑合譯, 非均勻系催化原理與應用, 渤海堂, 台北市, 151-155, 民77.
22.歐陽華, 鈰鋯複合氧化物對一氧化碳氧化影響之研究, 逢甲紡織碩論, 2004.
23.G. Colon, M. Pijolat, F. Valdivieso, H. Vidal, J. Kaspar, E. Finocchio, M. Daturi, C. Binet, J.C. Lavalley, R.T. Baker, S. Bernal, “Surface and structural characterization of CexZr1-xO2 mixed oxides as potential three-way catalyst promoters,” Journal of the Chemical Society, Faraday Transactions articles, 94, 3717-3726, 1998.
24.G. Colon, F. Valdivieso, M. Pijolat, R.T. Baker, J.J. Calvino, S. Bemal, “Textural and phase stability of CexZr1-xO2 mixed oxides under high temperature oxidising conditions,” Catalysis Today, 50, 271-284, 1999.
25.M. Yashima, K. Morimoto, N. Ishizawa, M. Yoshimura, “Zirconia-Ceria solid solution synthesis and the temperature-time-transformation diagram for the 1:1 composition,” Journal of the American Ceramic Society, 76, 1745-1750, 1993.
26.P. Fornasiero, G. Balducci, R. Di Monte, J. Kaspar, V. Sergo, G. Gubitosa, A. Ferrero, M. Graziani, “Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2,” Journal of Catalysis, 164, 173-183, 1996.
27.H. Vidal, J. Kaspar, M. Pijolat, G. Colon, S. Bernal, A. Cordon, V. Perrichon, F. Fally, “Redox behavior of CeO2-ZrO2 mixed oxides I. Influence of redox treatments on high surface area catalysts,” Applied Catalysis B: Environmental, 27, 49-63, 2000.
28.A.I. Leonov, A.B. Andreeva, E.K. Keler, “Influence of the gas atmosphere on the reaction of zirconium dioxide with oxides of cerium,” Izv. Akad. Nauk. SSSR Neorganicheskie materialy, 2, 137-144, 1966.
29.E. Tani, M. Yoshimura, S. Somiya, “Revised phase diagram of the system ZrO2-CeO2 below 1400 ℃,” Journal of the American Ceramic Society, 66, 506-510, 1983.
30.P. Duran, M. Gonzalez, C. Moure, J.R. Jurado, C. Pascual, “A new tentative phase equilibrium diagram for the ZrO2-CeO2 system in air,” Journal of materials science, 25, 5001-5006, 1990.
31.M. Yashima, H. Arashi, M. Kakihana, M. Yoshimura, “Raman scattering study of cubic-tetragonal phase transition in Zr1-xCexO2 solid solution,” Journal of the American Ceramic Society, 77, 1067-1071, 1994.
32.P. Fornasiero, R.D. Monte, G.R. Rao, J. Kaspar, S. Meriani, A. Trovarelli, M. Graziani, “Rh-loaded CeO2-ZrO2 solid solutions as highly efficient oxygen exchangers: Dependence of the reduction behavior and the oxygen storage capacity on the structural properties,” Journal of catalysis, 151, 168-177, 1995.
33.H. Schulz, W.J. Stark, M. Maciejewski, S.E. Pratsinis, A. Baiker, “Flame-made nanocrystalline ceria/zirconia doped with alumina or silica: structural properties and enhanced oxygen exchange capacity,” Journal of Materials Chemistry, 13, 2979-2984, 2003.
34.W. Wang, P. Lin, Y. Fu, G. Cao, “Redox properties and catalytic behavior of Praseodymium-modified (Ce-Zr)O2 solid solutions in three-way catalysts,” Catalysis Letters, 82, 19-27, 2002.
35.N. Takahashi, H. Shinjoh, T. Iijima, T. Suzuki, K. Yamazaki, K. Yokota, H. Suzuki, N. Miyoshi, S. Matsumoto, T. Tanizawa, T. Tanaka, S. Tateishi, K. Kasahara, “The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst,” Catalysis Today, 27, 63-69, 1996.
36.E. Fridell, M. Skoglundh, B. Westerberg, S. Johansson, G. Smedle, “NOx storage in barium-containing catalysts,” Journal of Catalysis, 183, 196-209, 1999.
37.V. Labalme, E. Garbowski, N. Guilhaume, M. Primet, “Modifications of Pt/alumina combustion catalysts by barium addition II. properties of aged catalysts,” Applied Catalysis A: General, 138, 93-108, 1996.
38.R.V. Yperen, D. Linder, L. Mussmann, E. Lox, T. Kreuzer, “Method of depositing catalytically active components on high-surface area support materials,” United States Patent, US6103660A1, 2000.
39.D. Linder, R.V. Yperen, L. Mussmann, E. Lox, T. Kreuzer, “Exhaust gas treatment catalyst for internal combustion engines with two catalytically active layers on a carrier structure,” United States Patent, US6348430B1, 2002.
40.M. Muhammed, O. Adamopoulos, T. Bog, L. Mussmann, D. Lindner, M. Votsmeier, M. Feger, E. Lox, T. Kreuzer, “Oxygen storage material, process for its preparation and its application in a catalyst,” United States Patent, US7202194B2, 2007.
41.H. Tanaka, I. Tan, M. Uenishi, N. Kajita, M. Taniguchi, Y. Sato, K. Narita, N. Sato, “Catalyst for clarifying exhaust,” United States Patent, US7205257B2, 2007.
42.H. Yamada, A. Takami, H. Iwakuni, M. Kyogoku, K. Okamoto, “Catalyst for purifying exhaust gas and manufacturing method thereof,” United States Patent, US6221804B1, 2001.
43.K. Okamoto, A. Takami, H. Yamada, S. Miyoshi, “Catalyst for purifying exhaust gas and method for purifying exhaust gas with the catalyst,” United States Patent, US6620392B2, 2003.
44.T. Maunula, “Adsorbent catalyst,” United States Patent, US6818582B2, 2004.
45.B.D. Cullity, S.R. Stock, “Elements of X-Ray Diffraction,” Third edition, Prentice Hall, United States of America, p633, 2001.
46.E. Mamontov, R. Brezny, M. Koranne, T. Egami, “Nanoscale heterogeneities and oxygen storage capacity of Ce0.5Zr0.5O2,” The Journal of Physical Chemistry B, 107, 13007-13014, 2003.
47.M. Ozawa, K. Matuda, S. Suzuki, “Microstructure and oxygen release properties of catalytic alumina-supported CeO2-ZrO2 powders,” Journal of Alloys and Compounds, 303-304, 56-59, 2000.
48.M. Binnewies, E. Mike, “Thermochemical data of elements and compounds,” Second, Revised and Extended Edition, Wiley-VCH Verlag GmbH, Weinheim, 2002.
49.閻忠君, 鈰鋯復合氧化物的改性研究及其性能表征, 北京化工大學, 2005.
50.D.J. Kim, “Lattice parameters, ionic conductivities, and solubility limits in Fluorite-Structure MO2 oxide (M = Hf4+, Zr4+, Ce4+, Th4+, U4+) solid solutions,” Journal of the American Chemical Society, 72, 1415-1421, 1989.
51.W.D. Kingery, H.K. Bowen, D.R. Uhlmann, “Introduction to Ceramics,” 2nd Ed., John Wiley and Sons, New York, 1976.
52.J. Fan, D. Weng, X. Wu, X. Wu, R. Ran, “Modification of CeO2-ZrO2 mixed oxides by coprecipitated/impregnated Sr: Effect on the microstructure and oxygen storage capacity,” Journal of Catalysis, 258, 177-186, 2008.
53.V.G. Keramidas, W.B. White, “Raman scattering study of the crystallization and phase transformations of ZrO2,” Journal of the American ceramic society, 57, 22-24, 1974.
54.A.E. Pasto, R.A. Condrate, "Advances in Raman Spectroscopy," (J. P. Mathieu, Ed.), Vol. 1, Heiden & Son, London, p196, 1973.