簡易檢索 / 詳目顯示

研究生: 李彥德
Li, En-Der
論文名稱: 以有限差分時域法模擬週期結構及粗糙表面之輻射性質
Modeling the Radiative Properties of Periodic Structures and Rough Surfaces with the Finite Difference Time Domain Method
指導教授: 陳玉彬
Chen, Yu-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 79
中文關鍵詞: 有限差分時域法斜向入射週期結構輻射性質模擬隨機粗糙表面
外文關鍵詞: finite difference time domain method, oblique incidence, periodic structure, radiative property simulation, random rough surface
相關次數: 點閱:134下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著微奈米尺度製程技術的不斷突破,可得到的結構更加的複雜且多樣化,於能源轉換與光學元件具有極大應用價值。故本文以微奈米週期結構和具微奈米尺度隨機粗糙表面為焦點,希望建立其光學及輻射性質數值模擬的能力,進而節省實際製作與量測的成本,或開發更多潛在應用。
    研究內容是以有限差分時域(Finite Difference Time Domain, FDTD)理論為基礎撰寫Fortran程式,主要貢獻包括:一、成功重現已知文獻中,一維、二維週期結構及隨機粗糙表面之輻射性質。二、在給定粗糙表面高度的標準差和相關聯長度之條件下,可成功建立一維、二維隨機粗糙表面。三、將FDTD結合複合單元細胞法(multiple unit cell method),成功模擬週期結構在< 60°斜向入射之輻射性質。

    The advancements in micro/nano fabrication make it feasible to obtain complex and diverse structures, which have great potentials in energy conversion and optical elements. Therefore, this work focuses on the numerical ability development for optical and radiative properties of micro/nano periodic structures and random rough surfaces. It is hoped that the success of the work not only saves the cost of fabrication but also measurement or develop potential applications.
    Here, I developed the Fortran programs based on the finite difference time domain (FDTD) method. The main contributions of this thesis are listed below. First, obtained radiative properties of 1D and 2D periodic structures as well as those of random rough surfaces agree well with those from published literatures. Second, programs were also established for 1D and 2D random rough surface generation such that the standard deviation and correlation length of rough surface height can be controlled. Third, makes it feasible to acquire radiative properties of periodic structures for the zenith angle up to 60 degrees combining FDTD method with multiple unit cell method.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 符號表 xiii 第一章 緒論 1 1. 研究動機 1 2. 研究目標 2 第二章 有限差分時域法 4 1. 發展背景 4 2. 公式推導 6 (1) 馬克斯威爾方程式和FDTD基本架構 6 (2) 穩定性標準 13 (3) 入射場源 14 (4) Drude model 19 3. 邊界層設定 21 (1) 單軸完美匹配層 21 (2) 週期性邊界條件 31 4. 計算流程 34 第三章 週期結構與隨機粗糙表面 35 1. 週期結構 35 2. 隨機粗糙表面 39 (1) 參數介紹 39 (2) 一維隨機粗糙表面產生 44 (3) 二維隨機粗糙表面產生 45 第四章 程式能力驗證 49 1. 有限差分時域法 49 (1) 收斂性驗證 49 (2) 一維週期結構輻射性質 52 (3) 二維週期結構輻射性質 57 2. 隨機粗糙表面 63 (1) 一維隨機粗糙表面 63 (2) 二維隨機粗糙表面 65 (3) 隨機粗糙表面輻射性質 68 第五章 結論與未來工作 70 1. 結論 70 2. 未來工作 70 參考文獻 72

    Basu, S., Chen, Y.-B., and Zhang, Z. M., “Microscale Radiation in Thermophotovoltaic Devices – A Review,” Int. J. Energy Res., Vol. 31, pp. 689716, 2007.
    Berenger, J. P., “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comp. Phys., Vol. 114, pp. 185200, 1994.
    Bohren, C. F. and Huffman, D. R., Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New York, 1983.
    Chan, T. K., Kuga, Y., Ishimaru, A., and Le, C.T.C., “Experimental Studies of Bistatic Scattering from Two-Dimensional Conducting Random Rough Surfaces,” IEEE Trans. Geosci. Remote Sens., Vol. 34, pp. 674680, 1996.
    Chen, Y. B. and Zhang, Z. M., “Design of Tungsten Complex Gratings for Thermophotovoltaic Radiators,” Opt. Commun., Vol. 269, pp. 411417, 2007.
    Chen, Y. B. and Zhang, Z. M., “Radiative Properties of Patterned Wafers with Nanoscale Linewidth,” J. Heat Transfer, Vol. 129, pp. 7990, 2007.
    Chen, Y. B., Lee, B. J., and Zhang, Z. M., “Infrared Radiative Properties of Submicron Metallic Slits,” J. Heat Trans.-T. ASME, Vol. 130, pp. 0824041/8, 2008.
    Chen, Y. B., Chen, J. S., and Hsu, P. F. “Impacts of geometric modifications on infraredoptical responses of metallic slit arrays,” Opt. Express, Vol. 17, pp. 97899803, 2009.
    Drolen, B. L., “Bidirectional Reflectance and Secularity of Twelve Spacecraft Thermal Control Materials,” J. Thermophys. Heat Trans., Vol. 6, pp. 672679, 1992.
    Fu, K. and Hsu, P. F., “A Novel Periodic Boundary Condition Treatment in Electrodynamics Wave Interaction with Small Structures,” ASME International Mechanical Engineering Congress and Exposition, Seattle, Washington, USA., 2007.
    Gedney, S. D., “A anisotropic perfectly matched layer absorbing media for truncation of FDTD lattices,” IEEE T. Antenn. Propaga., Vol. 44, pp. 16301639, 1996.
    Gu, X. and Huang, Y., “The Modelling and Simulation of a Rough Surface,” Wear, Vol. 137, pp. 27585, 1990.
    Hibbins, A. P., Sambles, J. R., and Lawrence, C. R., “Excitation of Remarkably Nondispersive Surface Plasmons on a Nondiffracting, Dual-Pitch Metal Grating,” Appl. Phys. Lett., Vol. 80, pp. 24102412, 2002.
    Hebb, J. P., Jensen, K. F., and Thomas, J., “The Effect of Surface Roughness on the Radiative Properties of Patterned Silicon Wafers,” IEEE T. Semiconduct. M., Vol. 11, pp. 607614, 1998.
    Holland, R., “Threde: A Free-Field EMP Coupling and Scattering Code,” IEEE Trans. Nuclear Sci., Vol. 24, pp. 24162421, 1977.
    Hu, Y. Z. and Tonder, K., “Simulation of 3-D Random Rough Surface by 2-D Digital Filter and Fourier analysis,” Int. J. Mach. Tools Manuf., Vol. 32, pp. 8390, 1992.
    Kim, S. H., Park, J. D., and Lee, K. D., “Fabrication of a Nano-Wire Grid Polarizer for Brightness Enhancement in Liquid Crystal Display,” Nanotechnology, Vol. 17, pp. 44364438, 2006.
    Kanamori, Y., Shimono, M., and Hane, K., “Fabrication of Transmission Color Filters Using Silicon Subwavelength Gratings on Quartz Substrates,” IEEE Photonic Tech. L., Vol. 18, pp. 21262128, 2006.
    Knotts, M. E., O’Donnell, K. A., “Measurements of Light Scattering by a Series of Conducting Surfaces with One-Dimensional Roughness.” J. Opt. Soc. Am . A, Vol. 11, pp. 697710, 1994.
    Kunz, K. S., and Lee, K. M., “A Three-Dimensional Finite-Difference Solution of the External Response of an Aircraft to a Complex Transient EM Environment I: The Method and its Implementation,” IEEE Trans. Electromagn. Compat., Vol. 20, pp. 328333, 1978.
    Kunz, K. S. and Luebbers, R. J., The Finite Difference Time Domain Method for Electromagnetics, CRC, Boca Raton, FL., 1993.
    Lalanne, P., “Improved Formulation of the Coupled-Wave Method for Two-Dimensional Gratings,” J. Opt. Soc. Am. A, Vol. 14, pp. 15921598, 1997.
    Li, L. F., “Use of Fourier Series in the Analysis of Discontinuous Periodic Structures,” J. Opt. Soc. Am. A, Vol. 13, pp. 18701876, 1996.
    Lee, K. H. and Laxpati, S. R., “FDTD Analysis of an Infinite Array of Microstrip Patches,” Proc. 1996 IEEE Antennas Propag. Sco. Intl. Symp., Vol. 2, pp. 12841287, 1996
    Lockyear, M. J., Hibbins, A. P., Sambles, J. R., and Lawrence, C. R., “Low Angular-Dispersion Microwave Absorption of a Dual-Pitch Nondiffracting Metal Bigrating,” Appl. Phys. Lett., Vol. 83, pp. 806808, 2003.
    Maloney, J. G., and Kesler, M. P., “Analysis of Periodic Structures,” Chap. 6 in Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method, A. Taflove, (ed.), MA: Artech House, Norwood, 1998.
    Moharam, M. G., Grann, E. B., Pommet, D. A., and Gaylord, T. K., “Formulation for Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary Gratings,” J. Opt. Soc. Am. A, Vol. 12, pp. 10681076, 1995.
    Mur, G., “Absorbing Boundary Conditions for the Finite-Difference Electromagnetic Field Equations,” IEEE Trans. Electromagn. Compat., Vol. 23, pp. 377382, 1981.
    Nagpal, P., Han, S. E., Stein, A., and Norris, D. J., “Efficient Low-Temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals,” Nano Letter, Vol. 8, pp. 32383243, 2008.
    Ogilvy, J. A. and Fostert, J. R., “Rough Surfaces: Gaussian or Exponential Statistics?,” J. Phys. D, Vol. 22, pp. 12431251, 1989.
    Ogilvy, J. A., Theory of wave scattering from random rough surfaces, Adam Hilger, Bristol, England, 1991.
    Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, United States, 1985.
    Priestly, M. B., Spectral Analysis and Time Series, Academic, New York, 1981.
    Sacks, Z. S., Kingsland, D. M., Lee, D. M., and Lee, J. F., “A Perfectly Matched Anisotropic Absorber for Use as an Absorbing Boundary Condition,” IEEE T. Antenn. Propaga., Vol. 43, pp. 14601463, 1995.
    Sai, H., Yugami, H., Kanamori, Y., and Hane, K., “Spectrally Selective Thermal Radiators and Absorbers with Periodic Microstructured Surface for High-Temperature Applications,” Microscale Therm. Eng., Vol. 7, pp. 101115, 2003.
    Sai, H., Kanamori, Y., Hane, K., and Yugami, H., “Numerical Study on Spectral Properties of Tungsten One-Dimensional Surface-Relief Gratings for Spectrally Selective Devices,” J. Opt. Soc. Am. A, Vol. 22, pp. 18051813, 2005.
    Sandstrom, R. L., Ershov, A. I., Partlo, W. N., Fomenkov, I. V.,and Smith, S. T., “High Resolution Etalon-Grating Monochromator,” U. S. Patent 6,480,275 B2, 2002.
    Taflove, A., and Brodwin, M. E., “Computation of the Electromagnetic Fields and Induced Temperatures within a Model of the Microwave-Irradiated Human Eye,” IEEE Trans. Microwave theory Tech., Vol. 23, pp. 888896, 1975.
    Taflove, A., and Hagness, S. C., Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed., Artech House, Boston, MA., 2005.
    Thorsos, E. I., “The Validity of The Kirchhoff Approximation for Rough Surface Scattering Using A Gaussian Roughness Spectrum,” J. Acoust. Soc. Am., Vol. 83, pp. 7892, 1988.
    Wu, J. J., “Simulation of Rough Surfaces with FFT,” Tribol. Int., Vol. 33, pp. 4758, 2000.
    Ye, Y., Zhou, Y., and Chen, L., “Color Filter Based on a Two-Dimensional Submicrometer Metal Grating,” Appl. Opt., Vol. 48, pp. 50355039, 2009.
    Yee, K.S., “Numerical Solution of Initial Boundary Value Problem Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antennas and Propagation, Vol. 14, pp. 302307, 1966.
    Yoon, Y. T., Lee, H. S., Lee, S. S., Kim, S. H., Park, J. D., and Lee, K. D., “Color Filter Incorporating a Subwavelength Patterned Grating in Poly Silicon,” Opt. Express, Vol. 16, pp. 23742380, 2008.
    Zhao Y. P., “A Simple Introduction to Rough Surface Characterization,” Department of Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York, 2000.
    Zhu, Q., Lee, H., and Zhang, Z. M., “Radiative properties of materials with surface scattering or volume scattering: A review,” Front. Energy Power Eng. China, Vol. 3, pp. 6079, 2009.

    下載圖示 校內:2014-01-11公開
    校外:2014-01-11公開
    QR CODE