簡易檢索 / 詳目顯示

研究生: 朱秦億
Chu, Chin-Yi
論文名稱: 鈀及鈀銀複合膜之製備、特性分析及其氫/氮選透性之研究
Study on Preparation, Characterization and Hydrogen/Nitrogen Permselectivity of Pd and PdAg Composite Membranes
指導教授: 黃定加
Huang, Ting-Chia
陳慧英
Chen, Huey-Ing
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 166
中文關鍵詞: 鈀銀複合膜鈀複合膜氫氣透過無電鍍共析鍍
外文關鍵詞: Pd composite membrane, PdAg composite membrane, electroless plating, co-deposition, hydrogen permeation
相關次數: 點閱:72下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以無電鍍法製備鈀及鈀銀複合膜,並進行特性分析及氫氮氣體之透過研究。研究內容主要包括三大主題:1. 鈀/氧化鋁複合膜之特性分析及氫/氮選透性之研究;2. 鈀/多孔不銹鋼複合膜之特性分析及氫/氮選透性之研究;3. 鈀銀/氧化鋁複合膜之特性分析。
    在“鈀/氧化鋁複合膜之特性分析及氫/氮選透性之研究”部分,吾人以抽氣輔助無電鍍製備鈀/氧化鋁複合膜。實驗中探討抽氣壓力及析鍍時間對鈀膜緻密性、表面型態及晶粒大小之影響。另外,亦進行氫/氮氣之透過實驗。由氮氣透過結果可知,降低抽氣壓力(即提高真空度)與增加析鍍時間可使鈀膜之緻密性提高,進而減小氮氣之透過係數。當抽氣壓力為3 kPa時,析鍍1 hr可製得完全緻密之鈀膜層(即氮氣無法透過),且其厚度約4.5 um。由複合膜斷面之SEM分析可知,以抽氣輔助無電鍍,除可提高鈀膜層之緻密性外,亦可增進鈀膜與氧化鋁基材之接著性。由氫氣透過結果可知,氫氣透過此鈀/氧化鋁複合膜之速率,主要由氫氣在鈀膜層之表面反應所控制,且經由計算可知其活化能為18 kJ/mole。
    在“鈀/多孔不銹鋼複合膜之特性分析及氫/氮選透性之研究”部分,由於不銹鋼基材之孔徑分佈不均,故吾人先以氧化鋁及鈀微粉修飾孔隙,再以無電鍍法製備鈀/多孔不銹鋼複合膜。研究中首先探討氧化鋁微粉與鈀微粉修飾對不銹鋼基材之孔徑分佈及其後析鍍鈀膜層緻密性之影響。由孔徑分析結果可知,不銹鋼基材經氧化鋁微粉及鈀微粉修飾後,其平均孔徑由4 m減小至nm級。由氮氣透過結果可知,未經處理及拋光後之不銹鋼基材因含有巨孔(macropores),故氮氣之透過機構除Knudsen diffusion與Poiseuille flow外,尚包含紊流(turbulent flow)機制。而經氧化鋁微粉填塞表面孔洞後,因巨孔消失而降至中孔級,故只存在Knudsen diffusion與Poiseuille flow兩種機制。
    由氫氣透過結果可知,在623 K及壓力差300 kPa時,氫氣透過厚度為8 m之鈀膜層之流通量為0.087 mole/m2-s,且其氫/氮選擇率為2200。此複合膜之氫氣透過通量約為Mardilovich等人所製備鈀複合膜之4倍。另外,氫氣透過鈀/不銹鋼複合膜之速率決定步驟為氫氣在鈀膜之表面反應,且其活化能估算約為32.5 kJ/mole。
    在“鈀銀/氧化鋁複合膜之特性分析”部分,吾人以無電鍍共析鍍法製備鈀銀/氧化鋁複合膜,並探討鍍液中之銀含量、總金屬離子濃度及析鍍時間等製備變因對鈀銀膜層微結構之影響。由SEM分析可知,當銀含量由0提高至50%時,鍍膜表面型態由nodular狀鈀顆粒逐漸轉變成樹枝狀(dendritic)結構之鈀銀顆粒。另外,當提高鍍液中金屬離子總濃度及析鍍時間時,亦有類似之趨勢。由於銀有優先析鍍之現象,導致鍍膜之銀含量高於鍍液中之銀含量。由氮氣透過分析可知,以銀含量為50%之鍍液所製得之鈀銀膜層,具有最小平均孔徑及最大孔隙率,其氮氣透過量亦呈最大值。為進一步解析鈀銀共析鍍行為及析鍍層結構,吾人進行極化曲線之量測。由結果可知,因鈀、銀之析鍍速率及成長模式相異,故鈀銀共析鍍時會有樹枝狀結構產生,且以混合電位理論分析所預測之鈀銀膜層組成與實驗值相符。
    綜合上述研究結果可知,基材經由孔隙修飾後之平均孔徑若小於0.2 um且孔徑分佈均一時,以抽氣輔助無電鍍法可製備高氫/氮選透性之緻密鈀複合膜。另外,因鈀銀共析鍍時,鍍層會產生樹枝狀結構而導致氫氮選透性偏低。雖然目前逐層析鍍技術尚有困難待克服,但未來以逐層析鍍來製備完全緻密之鈀銀/氧化鋁複合膜應是樂觀可期。

    The characterization and hydrogen permselectivity of Pd and PdAg composite membranes prepared by electroless deposition have been investigated in this study. Three research parts are included: 1. characterization and hydrogen/nitrogen permeation of Pd/Al2O3 composite membranes, 2. characterization and hydrogen/nitrogen permeation of Pd/porous stainless steel (PSS) composite membranes, and 3. characterization of PdAg/Al2O3 composite membranes.
    In the part of ‘characterization and hydrogen/nitrogen permselectivity of Pd/Al2O3 composite membranes’, the deposition of Pd layer on the Al2O3 support was prepared by suction-aided electroless deposition. The effects of suction pressure and plating time on the denseness of the Pd layer, surface morphology and crystallite size were studied. Furthermore, nitrogen/hydrogen permeation experiments were also performed. From the nitrogen permeation result, the denseness of the Pd layer was improved as decreasing the suction pressure, and increasing the plating time. This result led to the decrease of the nitrogen permeability through the Pd layer. As increasing the plating time to 1 hr, a 4.5 um-thick dense Pd layer was deposited on the Al2O3 support at suction pressure of 3 kPa. From SEM observations of cross-sections of Pd composite membranes, the suction-aided electroless deposition not only improved the denseness but also promoted the adhesion between the Pd layer and Al2O3 support. From hydrogen permeation results, the rate of hydrogen permeating through this Pd layer was controlled by the surface reaction. Moreover, the activation energy was determined as 18 kJ/mole.
    In the part of ‘characterization and hydrogen/nitrogen permeation of Pd/PSS composite membranes’, the PSS support was modified with Al2O3 powders and Pd nanoparticles prior to Pd electroless deposition due to the presence of macropores and broad pore size distribution. The effect of pore modification on the PSS support, and denseness of the Pd layer was investigated. Moreover, hydrogen/nitrogen permeation experiments were also conducted. From the analysis of pore size distribution, the average pore size of the PSS support filled with Al2O3 and Pd powders was reduced from 4 μm to several nm. From the nitrogen permeation result, it was found that the permeations of nitrogen through either the nascent or the polished PSS supports included Knudsen diffusion, Poiseuille flow, and turbulent flow. However, after pore modification with Al2O3 powders, the permeation contributed by turbulent flow can be negligible arising from the reduction of pores.
    Based on the result of hydrogen permeation, the measured hydrogen flux through the 8 um-thick Pd layer is 0.087 mole/m2-s at 623 K and 300 kPa, which was four times larger than that reported by Mardilovich et al. Moreover, the selectivity of H2/N2 is as high as 2200. In addition, the permeation rate of hydrogen through the Pd/PSS composite membrane was predominately controlled by the surface reaction. The activation energy was determined as 32.5 kJ/mole.
    In the part of ‘characterization of PdAg/Al2O3 composite membranes’, PdAg/Al2O3 composite membranes were prepared by electroless co-deposition. The effects of Ag content, total metal ion concentration, and plating time on the microstructure of deposited PdAg layers were studied. As the Ag content changed from 0 to 50%, the surface morphology of the deposited layer gradually became from nodular Pd grains to dendritic PdAg grains. In addition, the increases in total metal concentration and plating time also had similar effects. The Ag content in the deposited layer measured higher than that in the plating bath was because of the preferential deposition of Ag. Furthermore, the co-deposited PdAg layer prepared at 50% Ag plating bath exhibited the minimum pore size, as well as the maximum porosity and the nitrogen permeability. On the other hand, based on the result of the measurement of polarization curves, the dendritic structure of the PdAg co-deposited layer was resulted from the differences of plating rates and growth modes of Pd and Ag. Furthermore, the Ag content of the PdAg layer predicted from the electrochemical analysis was quite consistent with experimental values.
    In conclusion, when the pores of the support were reduced to be smaller than 0.2 m and with a narrow pore size distribution, a high hydrogen permselective Pd layer can be obtained by suction-aided electroless deposition. Moreover, the dendritic structure of PdAg layer prepared by electroless co-deposition was inevitably formed. So far, some difficulties appeared in the sequential electroless deposition are needed to overcome. However, it is highly expected to obtain perfectly dense PdAg/Al2O3 composite membranes by the sequential deposition technique in future.

    中文摘要 I 英文摘要 IV 誌謝 VII 總目錄 VIII 表目錄 XIII 圖目錄 XV 符號說明 XXI 第一章 緒論 1.1 氫氣之分離與純化………………………………….. 1 1.2 鈀系列薄膜之簡介………………………………….. 2 1.3 複合膜之製備……………………………………….. 3 1.4 基材之要求………………………………………….. 9 1.5 影響氫氣透過鈀合金膜之因素…………………….. 10 1.5.1 不純物或雜質…………………………...............10 1.5.2 前處理………………………………………….........11 1.5.3 鈀合金膜之微結構…………………………….........11 1.6 鈀合金複合膜之應用…………………………...........12 1.6.1 膜反應器……………………………………….........12 1.6.2 燃料電池……………………………………….........15 1.6.3 氫同位素回收與分離………………………….........16 1.7 研究目的與內容……………………………………...... 17 第二章 原理 2.1 鈀膜之氫脆化……………………………………….......33 2.2 鈀之無電鍍………………………………………….......34 2.2.1 無電鍍程序…………………………………….........34 2.2.2 基材之敏化及活化…………………………….........34 2.3 複合膜之氣體透過行為……………………………...... 36 2.3.1 氣體在多孔基材中之透過……………….............36 2.3.2 氫氣在鈀銀膜中之透過……………………….........38 2.3.3 氫氣在鈀銀/多孔基材複合膜中之透過………........40 第三章 鈀/氧化鋁複合膜之特性分析及氫/氮選透性之研究 3.1前言…………………………………………………... 48 3.2 實驗部分…………………………………………….. 49 3.2.1 實驗藥品……………………………………….........49 3.2.2 儀器及分析方法……………………………….........50 3.2.3 實驗方法及步驟……………………………….........51 3.3 結果與討論………………………………………….. 55 3.3.1 抽氣壓力對鈀層緻密性之影響……………….........55 3.3.2 析鍍時間對鈀層緻密性及厚度之影響……….........57 3.3.3 鈀層之表面型態及晶粒大小………………….........57 3.3.4 氧化鋁基材之氫氣透過……………………….........58 3.3.5 氫氣透過鈀複合膜…………………………….........58 3.3.6 氫氣透過之活化能…………………………….........59 第四章 鈀/多孔性不銹鋼複合膜之特性分析及氫/氮選透性之研究 4.1 前言……………...................................76 4.2氣體在巨孔質基材中之透過行為……………............77 4.3 實驗部分………………………………………….........78 4.3.1 實驗藥品及材料……………………………….........78 4.3.2 儀器及分析方法……………………………….........80 4.3.3 實驗方法及步驟……………………………….........81 4.4 結果與討論………………………………………….......83 4.4.1多孔不銹鋼管之修飾……………………………........83 4.4.2多孔不銹鋼管之孔徑分佈………………………........84 4.4.3 鈀微粉修飾孔隙結構之影響………………….........85 4.4.4 鈀膜之表面型態及厚度……………………….........85 4.4.5 未經微粉修飾不銹鋼管之氮氣透過………….........86 4.4.6 微粉修飾不銹鋼管之氣體透過……………….........87 4.4.7 鈀/不銹鋼複合膜之氫氣透過…………………........88 4.4.8 選擇率與活化能……………………………….........89 第五章 鈀銀/氧化鋁複合膜之特性分析 5.1 前言…………………………………………………...... 108 5.2 理論………………………………………………….. 109 5.2.1鈀銀合金系統中銀之作用………………………........109 5.2.2混合電位理論……………………………………........110 5.2.3鈀銀之共析鍍……………………………………........112 5.3 實驗部分……………………………………………..... 115 5.3.1 實驗藥品………………………………………...... ..115 5.3.2 儀器及分析方法……………………………….........116 5.3.3 實驗方法及步驟……………………………….........117 5.4 結果與討論…………………………………………...... 119 5.4.1 鈀銀膜層之表面型態及銀含量……………….........119 5.4.2 鈀銀膜層之晶相……………………………….........120 5.4.3 鈀銀膜層之孔徑……………………………….........121 5.4.4 極化曲線……………………………………….........122 第六章 結論與展望 6.1 結論……………………………………………….........143 6.2 建議及展望……………………………………….........145 參考文獻……………….................................147 自述………………………………………………….……......164

    1.J.N. Armor, Appl. Catal. A 176(2) (1999) 159.
    2.E.J. Serfass, H. Silman, Chem. Eng. 192 (1965) CE266.
    3.M.J. Cole, Platin. Met. Rev. 25(1) (1985) 12.
    4.V.Z. Mordkovich, Y.K. Baichtock, M.H. Sosna, Int. J. Hydrogen Energy 18(7)
    (1993) 539.
    5.R.J. Foley, O.R. Snuttijer, US Patent 6,126,726 (2000).
    6.J. Docekal, Int. J. Hydrogen Energy 11(11) (1986) 709.
    7.J.E. Philpott, Platin. Met. Rev. 29(1) (1985) 12.
    8.W.H. Scholz, Gas Sep. Purif. 7(3) (1993) 131.
    9.G.L. Matlack, Platin. Met. Rev. 13(1) (1969) 26.
    10.Production of ultra-pure hydrogen, Platin. Met. Rev. 8(3) (1964) 91.
    11.G.L. Matlack, Met. Prog. 85(3) (1964) 114.
    12.G.J. Grashoff, C.E. Pilkington, C.W. Corti, Met. Rev. 27 (1983) 157.
    13.J. Docekal, Int. Hydrogen Energy 11(11) (1986) 709.
    14.K. Aasberg-Petersen, C.S. Nielsen, S.L. Jorgensen, Catal. Today 46 (1998)
    193.
    15.K.E. Cox, In Irreversibility Analysis of Hydrogen Separation Schemes in
    Thermochemical Cycles, Proc. 2nd World Hydrogen Energy Cong., Zurich,
    Switzerland, 1978, 471.
    16.G.W. Meindersma, M. Kuczynski, J. Membr. Sci. 113 (1996) 285.
    17.A.L. Athayde, R.W. Baker, P. Nguyen, J. Membr. Sci. 94 (1994) 299.
    18.R. Ramachandran, R.K. Menon, Int. Hydrogen Energy 23 (7) (1998) 593.
    19.J.T. Brenna, H.J. Tobias, K.J. Goodman, U.S. Patent 5,661,038 (1997).
    20.E. Villa-Aleman, U.S. Patent 5,308,979 (1994).
    21.R.S. Willms, S.A. Birdsell, R.C. Wilhelm, Fusion Technol. 28 (1995) 772.
    22.R.S. Willms, S. Konishi, Fusion Eng. Des. 18 (1991) 53.
    23.R.S. Willms, R. Wilhelm, S. Konishi, Fusion Eng. Des. 28 (1995) 397.
    24.A. Obara, Japan Patent JP 63175627 (1988).
    25.R.S. Willms, U.S. Patent 5,525,322 (1996).
    26.S. Konishi, H. Yoshida, Y. Naruse, J. Less-Common Met. 89(2) (1983) 457.
    27.S.A. Birdsell, R.S. Willms, Fusion Eng. Des. 39-40 (1998) 1041.
    28.G.D. Berkheimer, R.E. Buxbaum, J. Vac. Sci. Technol. A 3(2) (1985) 412.
    29.V.M. Bystritskii, V.P. Dzhelepov, N.I. Doronicheva, P.F. Ermolov, K.O.
    Oganesyan, M.N. Omel'yanenko, S.Y. Porokhovoi, A.A. Rodina, V.E.
    Teplov,V.V. Fil'chenkov, Instrum. Exp. Tech. (Prib. Tekh. Eksp.) 15(2)
    (1972) 576.
    30.V.I. Sokolovskii, V.M. Makarov, Chem. Pet. Eng. (Khim. Neftegazov.
    Mashinostr.) 34(5-6) (1998) 357.
    31.J.R. Young, Rev. Sci. Instrum. 34(8) (1963) 891.
    32.G.P. Glazunov, E.D. Volkov, D.I. Baron, Ind. J. Hydrogen Energy 24 (1999)
    829.
    33.H. St.-C. Deville, L. Troost, Comptes rendus 57 (1863) 65.
    34.H. St.-C. Deville, Comptes rendus 59 (1864) 102.
    35.T. Graham, Phil. Trans. Roy. Soc. 156 (1866) 399.
    36.G.L. Holleck, J. Chem. Phys. 74 (1970) 503.
    37.M. Tsapatsis, G.R. Gavalas, AIChE J. 38 (1992) 847.
    38.R. Goto, Kagaku Kogaku 34 (1970) 381.
    39.N.I. Timofeyev, F.N. Berseneva, V.I. Gromov, Phys. Met. Metallogr. 51(2)
    (1981) 159.
    40.D. Fort, J.P.G. Farr, I.R. Harris, J. Less-Common Met. 39(2) (1975) 293.
    41.H. Yoshida, K. Okuno, Y. Naruse, T. Kashiwai, Fusion Technol. 8 (1985) 2388.
    42.T. Yasumatsu, J.L. Wan, M. Matsuyama, K. Watanabe, J. Alloys Compd. 293-295
    (1999) 900.
    43.M. Nuovo, F.M. Mazzolai, F.A. Lewis, J. Less-Common Met. 49 (1973) 37.
    44.N.I. Timofeyev, F.N. Berseneva, V.M. Makarov, Int. J. Hydrogen Energy 19
    (11) (1994) 895.
    45.K. Kandasamy, F.A. Lewis, Y. Sakamoto, X.Q. Tong, Int. J. Hydrogen Energy
    24 (1999) 759.
    46.Z. Nagy, R.M. Yonco, J. Electrochem. Soc. 133(11) (1986) 2232.
    47.H. Natter, M. Schmeizer, S. Janben, R. Hempelmann, Ber. Bunsen-Ges. 101(11)
    (1997) 1706.
    48.H. Natter, Ber. Bunsen-Ges. 100(1) (1996) 55.
    49.K.J. Bryden, J.Y. Ying, Nanostruct. Mater. 9 (1997) 485.
    50.K.J. Bryden, J.Y. Ying, J. Electrochem. Soc. 145(10) (1998) 3339.
    51.S.E. Nam, K.H. Lee, J. Membr. Sci. 170 (2000) 91.
    52.S.E. Nam, S.H. Lee, K.H. Lee, J. Membr. Sci. 153 (1999) 163.
    53.M. Amano, M. Komaki, C. Nishimura, J. Less-Common Met. 172-174 (1991) 727.
    54.S.E. Nam, K.H. Lee, J. Membr. Sci. 192 (2001) 177.
    55.Z.Y. Li, H. Maeda, K. Kusakabe, S. Morooka, H. Anzai, S. Akiyama, J. Membr.
    Sci. 78 (1993) 247.
    56.M. Tsapatsis, G.R. Gavalas, G. Xomeritakis, Recent Advances in Gas
    Separation and Microporous and Ceramic Membranes, Kanellopous, N.K., Ed.
    Membrane Science and Technology Series, Elsevier: New York, 6 (2000) 397.
    57.P. Atanosova, V. Bhaskaran, T. Kodas, H.M. Smith, Mater. Res. Soc. Symp.
    Proc. 428 (1996) 25.
    58.S. Morooka, S. Yan, S. Yokoyama, K. Kusakabe, Sep. Sci. Technol. 30(14)
    (1995) 2877.
    59.R. Gazula, T.L. Ward, AIChE Annual Mtg., Los Angeles, California, Nov. 16-
    21, 1997.
    60.J. Ye, G. Dan, Q. Yuam, Key Eng. Mater. 61 (1991) 437.
    61.G. Xomeritakis, Y.S. Lin, AIChE J. 44(1) (1998) 174.
    62.G. Xomeritakis, Y.S. Lin, J. Membr. Sci. 133(2) (1997) 217.
    63.L. Huang, C.S. Chen, Z.D. He, D.K. Peng, G.Y. Meng, Thin Solid Films 302
    (1997) 98.
    64.G.Y. Meng, L. Huang, M. Pan, C.S. Chen, D.K. Peng, Mater. Res. Bull. 32(4)
    (1997) 385.
    65.B. McCool, G. Xomeritakis, Y.S. Lin, J. Membr. Sci. 161 (1999) 67.
    66.A. Basile, E. Drioli, F. Santella, V. Violante, G. Capannelli, G. Vitulli,
    Gas Sep. Purif. 10(1) (1996) 53.
    67.A.L. Thomann, J.P. Rozenbaum, P. Brault, C. Andreazza-Vignole, P.
    Andreazza, Appl. Surf. Sci. 158 (2000) 172.
    68.I.J. Marshall, US Patent 5,298,137 (1994).
    69.V. Jayaraman, Y.S. Lin, J. Membr. Sci. 104 (1995) 251.
    70.W. Weirich, B. Biallas, B. Kugler, M. Oertel, M. Pietsch, U. Winkelmann,
    Int. J. Hydrogen Energy 11(7) (1986) 459.
    71.U. Winkelmann, R. Schulten, W. Weirich, B. Kugler, L. Lucke, M. Oertel, M.
    Pietsch, J. Schmitz, Chem. Ing. Tech. 58(10) (1986) 824.
    72.F. Behr, R. Schulten, W. Weirich, US Patent 4,496,373 (1985).
    73.P.P. Mardilovich, P.V. Kurman, A.N. Govyadinov, I.P. Mardilovich, R.
    Paterson, V.M. Gryaznov, Russ. J. Phys. Chem. 70(3) (1996) 514.
    74.K.J. Bryden, J.Y. Ying, Mater. Sci. Eng. A 204(1) (1995) 140.
    75.S. Uemiya, Y. Kude, K. Sugino, N. Sato, T. Matsuda, E. Kikuchi, Chem. Lett.
    (1988) 1687.
    76.S. Uemiya, N. Sato, H. Ando, Y. Kude, T. Matsuda, E. Kikuchi, J. Membr.
    Sci. 56 (1991) 303.
    77.H. Ocken, B.G. Pound, D.H. Lister, Thin Solid Films 171(1989) 313.
    78.S. N. Athavale, M.K. Totlani, Metal Finishing 87 (1989) 23.
    79.R. Govind, D. Atnoor, Ind. Eng. Chem. Res. 30 (1991) 591.
    80.R.E. Buxbaum, A.B. Kinney, Ind. Eng. Chem. Res. 35 (1996) 530.
    81.R.E. Buxbaum, T.L. Marker, J. Membr. Sci. 85 (1993) 29.
    82.R.E. Buxbaum, R. Subramanian, J.H. Park, D.L. Smith, J. Nucl. Mater. 233-
    237 (1996) 510.
    83.R.E. Buxbaum, P.C. Hsu, J. Nucl. Mater. 189(1) (1992) 183.
    84.J. Shu, B.P.A. Grandjean, E. Ghali, S. Kaliaguine, J. Membr. Sci. 77 (1993)
    181.
    85.J.P. Collins, J.D. Way, Ind. Eng. Chem. Res. 32 (1993) 3006.
    86.K.L. Yeung, A. Varama, AIChE J. 41(9) (1995) 2131.
    87.J. Shu, A. Adnot, B.P.A. Grandjean, S. Kaliaguine, Thin Solid Films 286
    (1996) 72.
    88.S. Ilias, N. Su, U.I. Udo-Aka, F.G. King, Sep. Sci. Technol. 32(1-4) (1997)
    487.
    89.J.N. Keuler, L. Lorenzen, R.D. Sanderson, V. Prozesky, W.J. Przybylowicz,
    Thin Solid Films 347 (1999) 91.
    90.Y.S. Cheng, K.L. Yeung, J. Membr. Sci. 182 (2001) 195.
    91.I.P. Mardilovich, E. Engwall, Y.H. Ma, Desalination 144 (2002) 85.
    92.Y. Yildirim, E. Gobina, R. Hughes, J. Membr. Sci. 135 (1997) 107.
    93.P.P. Mardilovich, Y. She, Y.H. Ma, AIChE J. 44(2) (1998) 310.
    94.V. Jayaraman, Y.S. Lin, M. Pakala, R.Y. Lin, J. Membr. Sci. 99 (1995) 89.
    95.H.C. Foley, A.W. Wang, B. Johnson, J.N. Armor, ACS Symp. Ser. 517 (1993)
    168.
    96.M. Eriksson, L.G. Ekedahl, Appl. Surf. Sci. 133 (1998) 89.
    97.S.B. Ziemecki, G.A. Jones, D.G. Swarzfager, J. Less-Common Met. 131 (1987)
    157.
    98.S.B. Ziemecki, G.A. Jones, J. Catal. 95 (1985) 621.
    99.S.B. Ziemecki, G.A. Jones, D.G. Swarzfager, R.L. Harlow, J. Am. Chem. Soc.
    107 (1985) 4547.
    100.J. Stachurski, A. Frackiewicz, J. Less-Common Met. 108 (1985) 249.
    101.R.H. Siller, W.A. Oates, R.B. McLellan, J. Less-Common Met. 16 (1968) 71.
    102.J.P. Collins, R.W. Schwartz, R. Sehgal, T.L. Ward, C.J. Brinker, G.P.
    Hagen, C.A. Udovich, Ind. Eng. Chem. Res. 35 (12) (1996) 4398.
    103.F.L. Chen, F. Kinari, Y. Sakamoto, Y. Nakayama, Ind. J. Hydrogen Energy 21
    (7) (1996) 555.
    104.J.P. Collins, Ind. Eng. Chem. Res. 36 (1997) 2876.
    105.J.G. Cohn, Ind. Eng. Chem. Res. 36 (1997) 2875.
    106.E.V. Skakunova, M.M. Ermilova, Bull. Acad. Sci. USSR (Izv.Akad. Nauk SSSR,
    Ser. Khim.) 5 (1988) 986.
    107.M. van Swaay, C.E. Birchenall, AIME Trans. 218(4) (1960) 285.
    108.T.N. Kompaniets, A.A. Kurdyumov, Prog. Surf. Sci. 17 (1984) 75.
    109.J.E. Worsham, M.K. Wilkinson, C.G. Shull, J. Phys. Chem. Solids 3 (1957)
    303.
    110.K. Yamakwa, M. Ege, B. Ludescher, J. Alloys Compd. 321 (2001) 17.
    111.K.H. Lee, E.E. Wolf, Stud. Surf. Sci. Catal. 88 (1994) 69.
    112.G.P.Glazunov, Ind. J. Hydrogen Energy 22 (1997) 263.
    113.M.J. Ledoux, F.G. Gault, J. Catal. 60 (1979) 15.
    114.S.A. Koffler, J.B. Hudson, G.S. Ansell, Trans. Metall. Soc. AIME 245
    (1969) 1735.
    115.S. K. Heinze, B. Vuillemin, J.C. Colson, P. Giroux, d. Leterq, Solid State
    Ioncs 122 (1999) 51.
    116.R.V. Bucur, N.O. Ersson, X.Q. Tong, J. Less-Common Met. 172-174 (1991) 748.
    117.H. Hagi, Mater. Trans. JIM 31(11) (1990) 954.
    118.T.B. Flanagan, W.A. Oates, Annu. Rev. Mater. Sci. 21 (1991) 269.
    119.R.V. Kotelva, J.L. Glukhova, Int. J. Hydrogen Energy 22 (1997) 175.
    120.E. Storm, C. Talcott-Storms, Fusion Technol. 20(2) (1991) 246.
    121.S. Tagaki, T. Sugeno, Jpn. J. Appl. Phys. 4(10) (1965) 772.
    122.A.A. Rodina, M.A. Gurevich, N.I. Doronicheva, Russ J. Phys. Chem. 42(7)
    (1968) 959.
    123.Y.S. Kodes, A.B. Zakharov, M.I. Timofeyev, Phys. Met. Metallogr. 67(6)
    (1989) 123.
    124.N.A. Scholtus, W.K. Hall, J. Chem. Phys. 39(4) (1963) 868.
    125.P.L. Andrew, A.A. Haasz, J. Less-Common Met. 172-174 (1991) 732.
    126.M. Kajiwara, S. Uemiya, T. Kojima, Int. J. Hydrogen Energy 24(9) (1999)
    839.
    127.M. Kajiwara, S. Uemiya, T. Kojima, E. Kikuchi, Catal. Today 56(1-3) (2000)
    65.
    128.M. Kajiwara, S. Uemiya, T. Kojima, E. Kikuchi, Catal. Today 56(1-3) (2000)
    83.
    129.B.A. McCool, Y.S. Lin, J. Mater. Sci. 36 (2001) 3221.
    130.V.V. Latyshev, V.M. Bystritskiy, Phys. Met. Metallogr. 71 (6) (1991) 1.
    131.H. Noh, W. Luo, J. Alloys Compd. 196 (1993) 7.
    132.D.T. Hughes, J. Evans, I.R. Harris, J. Less-Common Met. 74 (1980) 255.
    133.M.L. Doyle, R.C.J. Wileman, I.R. Harris, J. Less-Common Met. 130 (1987) 79.
    134.R.C. Wileman, I.R. Harris, J. Less-Common Met. 109 (1985) 361.
    135.K.L. Yeung, S.C. Christiansen, A. Varama, J. Membr. Sci. 159 (1999) 107.
    136.Y.N. Guk, G.E. Kagn, V.V. Lobanov, E.S. Levin, Russ. Metall. (Izv. Akad.
    Nauk SSSR, Met.) 6 (1981) 187.
    137.L.Q. Wu, N. Xu, J. Shi, Ind. Eng. Chem. Res. 39(2) (2000) 342.
    138.V.M. Gryaznov, Dokl. Akad. Nauk SSSR 189(4) (1969) 755.
    139.V. Gryaznov, Catal. Today 51 (1999) 391.
    140.K. Mohan, R. Govind, AIChE J. 34(9) (1988) 1493.
    141.V.M. Gryaznov, V.S. Smirnov, L.K. Ivanov, A.P. Mishvhenko, Dokl. Akad.
    Nauk SSSR 190(1) (1970) 144.
    142.V.M. Grayznov, V.S. Smirnov,M.G. Slin'ko, Stud. Surf. Sci. Catal. 7A
    (1981) 224.
    143.T.M. Moustafa, S.S.E.H. Elnashaie, J. Membr. Sci. 178 (2000) 171.
    144.B.K. Abdalla, S.S.E.H. Elnashaie, J. Membr. Sci. 85 (1993) 229.
    145.B.K. Abdalla, S.S.E.H. Elnashaie, AIChE J. 40(12) (1994) 2055.
    146.E. Kikuchi, Catal. Today 56(1-3) (2000) 97.
    147.A. Criscuoli, A Basile, E. Drioli, O. Loiacono, J. Membr. Sci. 181 (2001)
    21.
    148.J. Galuszka, R.N. Pandey, S. Ahmed, Catal. Today 46 (1998) 83.
    149.O. Garnier, J. Shu, B.P.A. Grandjean, Ind. Eng. Chem. Res. 36(3) (1997)
    553.
    150.A.M. Adris, S.S.E.H. Elnashaie, R. Hughes, Can. J. Chem. Eng. 69 (1991)
    1061.
    151.V.M. Gryaznov, Sep. Purif. Methods 29(2) (2000) 171.
    152.J. Zaman, J. Membr. Sci. 92 (1994) 1.
    153.S. Ilias, R. Govind, AIChE Symp. Ser. 268(85) (1989) 18.
    154.V.M. Gryaznov, Platin. Met. Rev. 36(2) (1992) 70.
    155.E. Gobina, Membr. Technol. 86 (1997) 8.
    156.H.P. Hsieh, AIChE Sym. Ser. 261(84) (1988) 1.
    157.G. Saracco, V. Specchia, Catal. Rev. Sci. Eng. 36(2) (1994) 305.
    158.J. Shu, B.P.A. Grandjean, A. Van Neste, Can. J. Chem. Eng. 69(5) (1991)
    1036.
    159.H.P. Hsieh, AIChE Sym. Ser. 268(85) (1989) 53.
    160.S. Uemiya, Sep. Purif. Methods 28(1) (1999) 51.
    161.J.N. Armor, Catal. Today 25(3-4) (1995) 199.
    162.J.N. Armor, J. Membr, Sci. 147 (1998) 217.
    163.N. Itoh, W.C. Xu, A.M. Sathe, Ind. Eng. Chem. Res. 32 (1993) 2614.
    164.V.M. Gryaznov, Russ. J. Phys. Chem. 70(9) (1996) 1443.
    165.N. Itoh, W.C. Xu, K. Haraya, Ind. Eng. Chem. Res. 33 (1994) 197.
    166.A.P. Mishchenko,V.M. Gryaznov, M.E. Sarylova, Chem. Abst. 115:255109a
    (1991).
    167.M.M. Ermilova, L.D. Gogua, V.M. Gryaznov, S.I. Zavodchenko, Bull. Acad.
    Sci. USSR (Izv. Akad. Nsuk SSSR, Ser. Khim.) 29(4) (1980) 529.
    168.W.C. Pfefferle, US Patent 3,290,406 (1966).
    169.N. Itoh, T.H. Wu, J. Membr. Sci. 124 (1997) 213.
    170.N.V. Orekhova, M.M. Ermilova, V.M. Gryaznov, Russ. J. Phys. Chem. 71(9)
    (1997) 1389.
    171.N. Itoh, Catal. Today 25(3-4) (1995) 351.
    172.K.F. Rubio Barra, A. Vargas Escudero, L.F. Pavlova, V.M. Gryaznov, Russ.
    J. Phys. Chem. 56(10) (1982) 1603.
    173.Y.M. Serov, V.M. Zhernosek, V.M. Gryaznov, Kinet. Catal. 24(1) (1983) 207.
    174.N.V. Orekhova, N.L. Basov, M.M. Ermilova, V.M. Gryaznov, Russ. J. Phys.
    Chem. 68(12) (1993) 1944.
    175.R.E. Buxbaum, Sep. Sci. Technol. 18 (1983) 1251.
    176.D.J. Edlund, W.A. Pledger, J. Membr. Sci. 94 (1994) 111.
    177.E. Gobina, K. Hou, R. Hughes, Chem. Eng. Sci. 50(14) (1995) 2311.
    178.E. Gobina, R. Hughes, J. Membr. Sci. 90 (1994) 11.
    179.M. Nishikawa, T. Shirashi, Y. Kawamura, T. Takeishi, J. Nucl. Sci.
    Technol. 33(10) (1996) 774.
    180.L. Wilzen, L.G. Petersson, Vacuum 46(8-10) (1995) 1237.
    181.P.P. Coppola, US Pattent 3,630,690 (1971).
    182.A.W. Wang, B.A. Raich, B.K. Johnson, H.C. Foley, Prepr. Am. Chem. Soc.
    Div. Pet. Chem. 37 (1992) 743.
    183.J. Zaman, A. Chakma, Int. J. Hydrogen Energy 20(1) (1995) 21.
    184.T.M. Raybold, M.C. Huff, Catal. Today 56 (2000) 35.
    185.B. Emonts, J. Bogild Hansen, S. Ladsdaard Jorgensen, B. Hohlein, R.
    Peters, J. Power Sources 71 (1998) 288.
    186.A.L. Cabrera, L.E. Morales, J. Hasen, I.K. Schulier, Appl. Phys. Lett. 66
    (10) (1995) 1216.
    187.H. Noh, T.B. Flanagan, Y. Sakamoto, J. Alloys Compd. 231 (1995) 10.
    188.I.G. Batirev, A.N. Karavanov, J.A. Leiro, M. Heininen, J. Juhanoja, Surf.
    Interface Anal. 23(1) (1995) 50.
    189.G.S. Madia, G. Barbieri, E. Drioli, Can. J. Chem. Eng. 77(4) (1999) 698.
    190.S. Uemiya, N. Sato, H. Ando, E. Kikuchi, Ind. Eng. Chem. Res. 30 (1991)
    585.
    191.E. Xue, M. O'keeffe, J.R.H. Ross, Catal. Today 30 (1996) 107.
    192.E. Kikuchi, S. Uemiya, N. Sato, H. Inoue, H. Ando, T. Matsuda, Chem. Lett.
    3 (1989) 489.
    193.Y.M. Lin, M.H. Rei, Catal. Today 67 (2001) 77.
    194.J.C. Amphlett, R.F. Mann, B.A. Peppeley, P.R. Roberge, A. Rodrigues, J.P.
    Salvador, J. Power Sources 71(1-2) (1998) 179.
    195.S. Golunski, Platin. Met. Rev. 42(1) (1998) 2.
    196.T.S. Moss, N.M. Peachey, R.C. Snow, R.C. Dye, Int. J. Hydrogen Energy 23
    (2) (1998) 99.
    197.A. Li, R. Hughes, J. Membr. Sci. 165 (2000) 135.
    198.S. Ahmed, R. Kumar, M. Krumpelt, Fuel Cells Bull. 2(12) (1999) 4.
    199.R.J. Farrauto, C.R. Acad, Sci. Ser. Iic: Chim. 7(3) (2000) 573.
    200.N.S. Arvindan, B. Rajesh, M. Madhivanan, R. Pattabiraman, Indian J. Eng.
    Mater. Sci. 6 (1999) 73.
    201.A.S. Daring, Platin. Met. Rev. 2(1) (1958) 16.
    202.F.J. Ackerman, G.J. Koskinas, Ind. Eng. Chem. Fundam. 11(3) (1972) 332.
    203.S. Raftopoulos, C. Gentile, P. LaMarche, J. Langford, Fusion Technol. 30
    (3) (1996) 922.
    204.J. Koonce, H. Yoshida, O. Kveton, H. horikiri, R. Haange, Fusion Technol.
    28 (1995) 630.
    205.V.V. Latyshev, Sov. At. Energ. (At. Energ.). 68(1) (1990) 49.
    206.V.V. Latyshev, S.A. Federov, Soviet Mater. Sci. (Fiz. Khim. Mekh. Mater.)
    6 (1989) 64.
    207.K. Watanabe, M. Matsuyama, T. Kobayashi, W.M. Shu, Fusion Eng. Des. 39-40
    (1998) 1001.
    208.S. Tosti, V. Violante, Fusion Eng. Des. 43 (1998) 93.
    209.Y. Suzuki, S. Kimura, Nucl. Tech. 103 (1993) 93.
    210.Y. Suzuki, S. Kimura, J. At. Energy Soc. Jpn. 26(9) (1984) 802.
    211.G. Sicking, J. Less-Common Met. 101 (1984) 169.
    212.J. Evans, I.R. Harris, D.K. Ross, J. Less-Common Met. 89 (1983) 407.
    213.W.M. Rutherford, Mater. Sci. Forum 31 (1988) 19.
    214.S. Tanaka, R. Kiyose, J. Nucl. Sci. Technol. 16(12) (1979) 923.
    215.R.D. Penzhorn, U. Berndt, E. Kirste, J. Chabot, Fusion Technol. 32 (1997)
    232.
    216.K. Aoki, Y. Ogata, K. Kusakabe, S. Morooka, Int. J. Hydrogen Energy 23(5)
    (1998) 325.
    217.T.M. Ortiz, B.A. Meyer, A. Razani, J. Chem. Eng. Data 45(1) (2000) 120.
    218.F. Botter, J. Less-Common Met. 49(1-2) (1976) 111.
    219.B.M. Andreev, M.M. Domanov, Russ. J. Phys. Chem. 49(5) (1975) 734.
    220.M. Nishikawa, T. Shirashi, K. Murakami, J. Nucl. Sci. Technol. 33(6)
    (1996) 504.
    221.V. Tebus, L. Rivkis, G. Arutunova, E. Dmitrievsky, V. Filin, Y. Golikov,
    V. Krivova, V. Kapychev, J. Nucl. Mater. 271-272 (1999) 345.
    222.S. Thiebaut, B. Decamps, J.M. Penisson, B. Limacher, A. Pecheron Guegan,
    J. Nucl. Mater. 277 (2000) 217.
    223.V.M. Gryaznov, S.G. Gul'yanova, Y.M. Serov, Russ. Chem. Rev. 58 (1989) 35.
    224.Y.M. Serov, O.S. Gul'yanova, V.M. Gryaznov, Russ. J. Phys. Chem. 60 (1986)
    117.
    225.O.S. Gur'yanova, Y.M. Serov, S.G. Gul'yanova, Kinet. Catal. 28 (1988) 728.
    226.O.S. Gur'yanova, Y.M. Serov, S.G. Gul'yanova, V.M. Gryaznov, Kinet. Catal.
    30 (1989) 406.
    227.V.M. Gryaznov, S.G. Gul'yanova, Y.M. Serov, V.D. Yagodovskii, Russ. J.
    Phys. Chem. 55 (1981) 730.
    228.V.M. Gryaznov, A.P. Mishchenko, M.E. Sarylova, French Patent 2,595,093
    (1986).
    229.E. Kikuchi, S. Uemiya, N. Sato, H. Inoue, H. Ando, T. Matsuda, Chem. Lett.
    3 (1989) 489.
    230.V.M. Gryaznov, G. Slin'ko, Faraday Disc. Chem. Soc. 72 (1981) 73.
    231.Y.A. Zubarev, I.I. Miklalenko,V.D. Yagodoskii, Kinet. Catal. 24 (1983)
    1017.
    232.H. Nagamoto, H. Inoue, J. Chem. Eng. Jpn. 14 (1981) 377.
    233.V.M. Gryaznov, V.S. Smirnov, M.G. Slin'ko, in "Proc. the Int Congr.
    Catal., Pt. A.", T. Seiyama, K. Tanabe, Eds., Elsevier, Amsterdam (1981)
    224.
    234.V.M. Gryaznov, V.S. Smirnov, Russ. Chem. Rev. (1974) 821.
    235.H. Nagamoto, H. Inoue, Bull. Chem. Soc. Jpn. 59 (1986) 3935.
    236.V.M. Zhernosck, N.N. Mikhalenko, S. Iokhannes. E.V. Khrapova, V.M.
    Gryaznov, Kinet. Catal. 20 (1979) 753.
    237.N.N. Mikhalenko, E.V. Khranova, V.M. Gryaznov, Russ. J. Phys. Chem. 59
    (1985) 1533.
    238.N.N. Mikhalenko, E.V. Khranova, V.M. Gryaznov, Russ. J. Phys. Chem. 60
    (1986) 307.
    239.B.J. Wood, H. Wise, J. Catal. 5 (1966) 135.
    240.G. Aguilar, V.M. Gryaznov, L.F. Pavlova, V.D. Yagodovskii, Kinet. Catal.
    Lett. 7 (1977) 181.
    241.V.S. Smirnov, V.M. Gryaznov, V.I. Lebedeva, A.P. Mishchenko, V.P.
    Polyakova, E.M. Savitsky, US Patent 4,041,093 (1977).
    242.V.I. Lebedeva, V.M. Gryaznov, Izv. Akad. Nauk. SSSR, Ser. Khim. 5 (1988)
    1158.
    243.V.M. Gryaznov, V.S. Smirnov, K.M. Dyumaev, M.M. Ermilova, N.V. Fedorova,
    Soviet Patent 706,936 (1979).
    244.V.I. Lebedeva, V.M. Gryaznov, Izv. Akad. Nauk. SSSR, Ser. Khim. 3 (1981)
    611.
    245.V.M. Gryaznov, T.M. Belosljudova, A.P. Maganjuk, A.N. Karanov, A.V.
    Ermolaev, I.K. Sarycheva, GB Patent 2,096,595 A (1982).
    246.A.N. Karavanov, V.M. Gryaznov, Kinet. Catal. 25 (1984) 60.
    247.E.V. Skakunova, M.M. Ermilova, V.M. Gryaznov, Izv. Akad. Nauk. SSSR, Ser.
    Khim. 5 (1988) 986.
    248.L.F. Bulenkova, M.V. Shimanskaya, V.M. Gryaznov, L.F. Pavolva, Chem. Abst.
    92:180939m (1978).
    249.A.P.Mishchenko, V.M. Gryaznov, V.S. Smirnov, E.P. Senina, I.L. Parbuzina,
    N.R. Roshan, V.P. Polyakova, E.M. Savitskii, German Patent 2,816,279
    (1979).
    250.A.P.Mishchenko, V.M. Gryaznov, German Patent 3,013,799 (1981).
    251.V.M. Gryaznov, A.P. Mishchenko, V.S. Smirnov, M.V. Kashdan, M.E. Sarylova,
    A.B. Fasman, French Patent 2,595,092 (1986)
    252.Compagnie des Metaux Precieux, French Patent 2,302,273 (1976).
    253.A. Anderson, I.M. Dahl, K.J. Jens, E. Rytter, A. Slagtern, A. Solbakken,
    Catal. Today 4 (1989) 389.
    254.J. Schmitz, H. Gerke, Chem. Anlagen. Verfahren 20, 34 (1987) 113.
    255.J. Schmitz, H. Gerke, Chem. Labor. Betr. 39 (1988) 75.
    256.J. Schmitz, H. Gerke, Chem. Ind. (Duesseldorr) 111 (1988) 58.
    257.E.B. Nazarkina, N.A. Kirichenko, Khim. Teknnol. Topl. Masel 3 (1979) 5.
    258.S. Uemiya, N. Sato, H. Ando, T. Matsuda, E. Kikuchi, Appl. Catal. 67
    (1991) 223.
    259.J.E. Philpott, Platin. Met. Rev. 29 (1985) 12.
    260.D.M. Clayson,P. Howard, GB Patent 2,190,397 A (1987).
    261.N.I. Parfenova V.P. Polyakova, V.M. Gryaznov, Chem. Abst. 100:11269d
    (1983).
    262.V.M. Gryaznov, V.S. Smirnov, A.P. Mishchenko, S.I. Aladyshev, US Patent
    4,014,657 (1977).
    263.V.M. Gryaznov, M.M. Ermilova, L.S. Morozova, N.V. Orekhova, J. Less-Common
    Met. 89 (1983) 529.
    264.B.J. Wood, J. Catal. 11 (1968) 30.
    265.N. Itoh, Y. Shindo, K. Haraya, K. Obata, T. Hakuta, H. Yoshitome, Int.
    Chem. Eng. 25 (1985) 138.
    266.N. Itoh, AIChE J. 33 (1987) 1576.
    267.Y. Shindo, N. Itoh, K. Haraya, AIChE Symp. Ser. 272, 85 (1989) 80.
    268.V.M. Gryaznov, V.P. Polyakova, E.M. Savitsky, E.V.Khrapova, US Patent
    4,026,958 (1977).
    269.N.R. Roshan, A.P. Mishchenko, V.P. Polyakova, N.I. Parfenova, E.M.
    Savitsky, A. Voitekhova, V.M. Gryazznov, M.E. Sarylova, J. Less-Common
    Met. 89 (1983) 423.
    270.N.V. Orekhova, N.N. Ermilova, V.S. Smirnov, V.M. Gryaznov, Izv. Akad.
    Nauk. SSSR, Ser. Khim. 11 (1976) 2602.
    271.G. Aguilar, V.M.Gryaznov, L.F. Pavlova, V.D. Yagodovskii, React. Kinet.
    Catal. Lett. 7 (1977) 181.
    272.N.N. Mikhalenko, E.V. khrapova, V.M. Gryaznov, Kinet. Catal. 26 (1986) 125.
    273.M.E. Sarylova, A.P. Mishchenko, V.M. Gryaznov, V.S. Smirnov, Izv.Akad.
    Nauk. SSSR, Ser. Khim. 190 (1970) 144.
    274.A.P. Mishchemko, M.E. Saryolova, V.M. Gryaznov, V.S. Smirnov, N.R. Roshan,
    V.P. Polyakova, Izv.Akad. Nauk. SSSR, Ser. Khim. 7 (1977) 1620.
    275.V.S. Smirnov, V.M. Gryaznov, M.A. Miropol'skaya, G.I. Samokhvalov, N.K.
    Kozlovskaya, M.M. Ermilova, A.P. Mishchenko, Soviet Patent 437,743 (1978).
    276.N.L. Basov, V.M. Gryaznov, Chem. Abst. 107:236107u (1985).
    277.V.S. Smirnov, V.M. Gryaznov, M.M. Ermilova, V. Orekhova, N.R. Roshan,
    V.P.Polyakova, E.M. Savitskii, German Patent 3,003,993 (1981).
    278.V.S. Smirnov, V.M. Gryaznov, M.M. Ermilova, V. Orekhova, N.R. Roshan, V.P.
    Polyakova, E.M. Savitskii, Soviet Patent 870,393 (1981).
    279.N.N. Mikhalenko, C. Tabares, Sovrem. Zadachi. V. Tochn. Naukakh (1977)
    126.
    280.N.N. Mikhalenko, E.V. Khrapova, V.M. Gryaznov, Neftekhimiya 18 (1978) 354.
    281.R. Zhao, N. Itoh, R. Govind, "Novel Oxidative Membrane Reactor for
    Dehydrogenation Reactions" in "Novel Materials in Heterogeneous Catalysis"
    (ACS Symp. Ser. 437), R.T.K. Baker, L.L. Murrel. Eds., (1990) 216.
    282.G. Saracco, H.W.J.P. Neomagus, G.F. Versteeg, W.P.M. van Swaaij, Chem.
    Eng. Sci. 54 (1999) 1997.
    283.H. Bruning, A. Sieverts, Z. Phys. Chem. A-163 (1933) 432.
    284.L.J. Gillespie, W.Z. Downs, F. Am. Chem. Soc. 62 (1939) 2501.
    285.J.B. Hunter, Platin. Met. Rev. 4(4) (1960) 130.
    286.H. Connor, Platin. Met. Rev. 6(4) (1962) 130.
    287.D.R. Biswas, J. Mater. Sci. 21 (1886) 2217.
    288.F.A. Lewis, The Palladium Hydrogen System, Academic Press, London, 1967.
    289.R. Feenstra, D.G. de Groot, R. Griessen, J.P. Burger, A. Menovski, J. Less-
    Common Met. 130 (1987) 375.
    290.G.G. Libowitz, T.R P. Gibbs, J. Phys. Chem. 60 (1956) 510.
    291.F.L. Chen, Y. Kinari, Y. Sakamoto, J. Alloys Compd. 205 (1994) 119.
    292.T.R.P. Gibbs, J. Inorg. Nucl. Chem. 24 (1962) 349.
    293.A.C. Makrides, J. Phys. Chem. 68(8) (1964) 2160.
    294.J.N. Keuler, L. Lorenzen, R.N. Sanderson, V. Linkov, Plat. Surf. Finish. 84
    (8) (1997) 34.
    295.M. Charbonnier, M. Romand, E. Harry, M. Alami, J. Appl. Electrochem. 31
    (2001) 57.
    296.M. Charbonnier, M. Alami, M. Romand, J. Electrochem. Soc. 143(2) (1996)
    472.
    297.J. Shu, B.P.A. Grandjean, E. Ghali, S. Kaliaguine, J. Electrochem. Soc. 140
    (11) (1993) 3175.
    298.A. Li, G. Xiong, J. Gu, L. Zheng, J. Membr. Sci. 110 (1996) 257.
    299.D.S. Scott, F.A. Dullien, AIChE J. 8 (1962) 113.
    300.K. Keizer, R.J.R. Uhlorn, V.T. Zaspalis, A.J. Burggraaf, Key Eng. Mater.
    61-62 (1991) 143.
    301.K. Keizer, R.J.R. Uhlorn, R.J. van Vuren, A.J. Burggraaf, J. Membr. Sci.
    39 (1988) 285.
    302.N. Itoh, W.C. Xu, K. Haraya, J. Membr. Sci. 66(2-3) (1992) 149.
    303.R.C. Hurlbert, J.O. Konecny, J. Chem. Phys. 34(2) (1961) 655.
    304.G. Xomeritakis, Y.S. Lin, J. Membr. Sci. 120 (1996) 261.
    305.F.A. Lewis, Pure Appl. Chem. 62 (1990) 2091.
    306.F.A. Lewis, X.Q. Tong, R.V. Bucur, Platin. Met. Rev. 35 (1991) 138.
    307.B. Baranowski, F.A. Lewis, Ber. Bunsen-Ges. Phys. Chem. 93 (1989) 1225.
    308.J. Shu, B.P.A. Grandjean, S. Kaliaguine, J. Chem. Soc. Faraday Trans. 92
    (15) (1996) 2745.
    309.T.C. Huang, M.C. Wei, H.I. Chen, Sep. Sci. Technol. 36 (2001) 199.
    310.V.H. Gryaznov, O.S. Serebryannikova, Y.M. Serov, M.M. Ermilova, A.N.
    Karavanov, A.P. Mischenko, N.V. Orekhova, Appl. Catal. A 96 (1993) 15.
    311.N. Itoh, W.C. Xu, Appl. Catal. A 107 (1993) 83.
    312.R. Zhao, N. Itoh, Sep. Sci. Technol. 25(13-15) (1990) 1473.
    313.J. Shu, B.P.A. Grandjean, S. Kaliaguine, Appl. Catal. A 119 (1994) 305.
    314.S. Uemiya, T. Matsuda, E. Kikuchi, J. Membr. Sci. 56 (1991) 315.
    315.G. Xomeritakis, Y.S. Lin, J. Membr. Sci. 120 (1996) 261.
    316.A. Li, W. Liang, R. Hughes, J. Membr. Sci. 149 (1998) 259.
    317.H.B. Zhao, K. Pflanz, J.H. Gu, A.W. Li, N. Stroh, H. Brunner, G.X. Xiong,
    J. Membr. Sci. 142 (1998) 147.
    318.A. Li, W. Liang, R. Hughes, Thin Solid Films 350 (1999) 106.
    319.Y.S. Cheng, K.L. Yeung, J. Membr. Sci. 158 (1999) 127.
    320.J.N. Keuler, L. Lorenzen, S. Miachon, Sep. Sci. Technol. 37(2) (2002) 379.
    321.S. Ilias, N. Su, ; U.I. Ido-Aka, F.G. King, Sep. Sci. Technol. 32 (1997)
    487.
    322.J. Collins, J.D. Way, Ind. Eng. Chem. Res. 32 (1993) 3006.
    323.R.S. Souleimanova, A.S. Mukasyan, A. Varma, J. Membr. Sci. 166 (2000) 249.
    324. 陳慧英, "氧化鋁薄膜之製備及其在氣體分離上之應用", 國立成功大
    學化學工程研究所博士論文(1995).
    325. N. Feldstein, J.A. Weiner, Plating Feb. (1972) 140.
    326. T.L. Ward, T. Dao, J. Membr. Sci. 153 (1999) 211.
    327. H.I. Chen, C.Y. Chu, T.C. Huang, Sep. Sci. Technol. (2004) (in press).
    328. 王鉦源, "以化學還原法製備奈米及銀鈀微粉", 國立成功大學化學工
    程系碩士論文(2002).
    329. J.N. Keuler, L. Lorenzen, J. Membr. Sci. 195 (2002) 203.
    330. S.D. Axelrod, A.C. Makrides, J. Phys. Chem. 68(8) (1964) 2154.
    331. W. Auer, H.J. Grabke, Ber. Bunsenges 78(1) (1974) 58.
    332. W.A. Swansiger, J.H. Swisher, J.P. Darginis, C.W. Schoenfelder, J. Phys.
    Chem. 80 (3) (1976) 308.
    333. D. Fort, I.R. Harris, J. Less-Common Met. 41 (1975) 313.
    334. M. El-Batanouny, M. Strongin, G.P, Williams, Am. Phys. Soc. 46(4)
    (1981) 269.
    335. A.K.M. Fazle Kibria, Y. Sakamoto, Int. J. Hydrogen Energy 25 (2000)
    853.
    336. J.K. Norskov, F. Besenbacher, J. Less-Common Met. 130 (1987) 475.
    337. A.K.M. Fazle Kibria, Y. Sakamoto, Int. J. Hydrogen Energy 24 (1999)
    47.
    338. D.Artman, T.B. Flsnsgsn, J. Phys. Chem. 77(23) (1973) 2804.
    339. M. Paunovic, Plating 55 (1968) 1161.
    340. Y. Okinaka, J. Electrochem. Soc. 120 (1973) 739.
    341. I. Ohno, Surf. Technol. 4 (1976) 515.
    342. M. Saito, J. Met. Finish. Soc. Jpn. 17 (1966) 14.
    343. M. Saito, J. Met. Finish. Soc. Jpn. 17 (1966) 258.
    344. M. Saito, J. Met. Finish. Soc. Jpn. 17 (1966) 264.

    下載圖示 校內:立即公開
    校外:2004-04-12公開
    QR CODE