| 研究生: |
奈亞 Nayak, Siddharth |
|---|---|
| 論文名稱: |
使用腦電波訊號和功能性腦影像去探索抑制反應作業
下認知及情感間的相互作用 Exploring the cognitive - emotional interactions from response inhibition tasks using electroencephalography and functional neuroimaging |
| 指導教授: |
蔡志鑫
Tsai, Chih-Hsin Arthur |
| 共同指導: |
蕭富仁
Shaw, Fu-Zen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 跨領域神經科學國際博士學位學程 TIGP on The Interdisciplinary Neuroscience |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 外文關鍵詞: | EEG, ERP, ERSP, fMRI, Aging, Fronto-striatal |
| 相關次數: | 點閱:103 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Cognitive control helps us in implementing goal directed decision making which in turn shape the environment we live in. A key aspect of cognitive control is response inhibition. Response inhibition is defined by the ability of individuals to suppress a pre-potent motor response when it becomes irrelevant to the task at hand. In addition to playing a crucial in top-down goal directed processes like response inhibition, cognitive control also shapes bottom up processes like emotion recognition. This has given birth to the term “cognitive – emotional interactions”, wherein top-down cognitive processes interact with bottom up emotional processes. In the last decade, research on emotional inhibition has grown significantly. However, most studies do not study emotions in a task relevant setting, which is where the subject needs to make a response after recognition of the emotional stimulus. In this thesis, I will try to tease apart the neural processes involved in emotional inhibition (where emotions are task relevant) using electroencephalography (EEG) and functional neuroimaging (fMRI) tools in young and old adults. Most EEG studies focus on delta and theta power in the mid-frontal cortex in the frequency domain to understand response inhibition processes. The time domain event related potentials (ERPs) associated with response inhibition processes are N1, N2 and P3 components. Functional neuroimaging research on response inhibition has mostly focused on fronto-striatal- basal ganglia networks. While EEG and fMRI tools have been hugely successful at identifying biomarkers for inhibition, unfortunately the same can’t be said about emotional inhibition. To solve this barrier in existing research, I designed simple emotional decision making tasks using emotional faces from Taiwanese Face database. The EEG results identify delta and theta power in midline frontal regions as well as N2 and P3 ERP components being for successful emotional inhibition relative to neutral context. The fMRI results suggest a possible role of fronto-striatal networks in successful emotional modulation of response inhibition relative to neutral context in older adults relative to their younger counterparts. I will discuss the fMRI results in terms of compensation effect of aging. Unfortunately, EEG data collected didn’t involve older adults. So, I will discuss the implication of EEG findings in younger adults focusing on neural processes in time and frequency domain. The results of this thesis will look to address the current drawbacks in emotional inhibition literature by focusing on younger and older adults implying possible future extensions to psychological disorders like ADHD and GAD.
References
1. Logan GD, Cowan WB: On the ability to inhibit thought and action: A theory of an act of control. Psychol. Rev. 1984, 91(3):295.
2. Band GP, Van Der Molen MW, Logan GD: Horse-race model simulations of the stop-signal procedure. Acta Psychol. 2003, 112(2):105-142.
3. Aron AR: From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol. Psychiatry 2011, 69(12):e55-e68.
4. Cooper PS, Wong AS, Fulham WR, Thienel R, Mansfield E, Michie PT, Karayanidis F: Theta frontoparietal connectivity associated with proactive and reactive cognitive control processes. NeuroImage 2015, 108:354-363.
5. Kok A, Ramautar JR, De Ruiter MB, Band GP, Ridderinkhof KR: ERP components associated with successful and unsuccessful stopping in a stop‐signal task. Psychophysiology 2004, 41(1):9-20.
6. Huster RJ, Plis SM, Lavallee CF, Calhoun VD, Herrmann CS: Functional and effective connectivity of stopping. NeuroImage 2014, 94:120-128.
7. Huster RJ, Enriquez-Geppert S, Lavallee CF, Falkenstein M, Herrmann CS: Electroencephalography of response inhibition tasks: functional networks and cognitive contributions. Int. J. Psychophysiol. 2013, 87(3):217-233.
8. Aron AR, Robbins TW, Poldrack RA: Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn. Sci. 2014, 18(4):177-185.
9. Aron AR, Robbins TW, Poldrack RA: Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 2004, 8(4):170-177.
10. Aron AR, Poldrack RA: Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. J. Neurosci. 2006, 26(9):2424-2433.
11. Cromheeke S, Mueller SC: Probing emotional influences on cognitive control: an ALE meta-analysis of cognition emotion interactions. Brain Struct. Funct. 2014, 219(3):995-1008.
12. Senderecka M: Emotional enhancement of error detection—The role of perceptual processing and inhibition monitoring in failed auditory stop trials. Cogn. Affect. Behav. Neurosci. 2018, 18(1):1-20.
13. Senderecka M: Threatening visual stimuli influence response inhibition and error monitoring: An event-related potential study. Biol. Psychol. 2016, 113:24-36.
14. Pawliczek CM, Derntl B, Kellermann T, Kohn N, Gur RC, Habel U: Inhibitory control and trait aggression: neural and behavioral insights using the emotional stop signal task. NeuroImage 2013, 79:264-274.
15. Luck SJ: An introduction to the event-related potential technique: MIT press; 2014.
16. Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD: The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41(1):49-100.
17. Chambers CD, Garavan H, Bellgrove MA: Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci. Biobehav. Rev. 2009, 33(5):631-646.
18. Boehler CN, Münte TF, Krebs RM, Heinze H-J, Schoenfeld MA, Hopf J-M: Sensory MEG responses predict successful and failed inhibition in a stop-signal task. Cereb. Cortex 2008, 19(1):134-145.
19. Langford ZD, Krebs RM, Talsma D, Woldorff MG, Boehler CN: Strategic down‐regulation of attentional resources as a mechanism of proactive response inhibition. Eur. J. Neurosci. 2016, 44(4):2095-2103.
20. Langford ZD, Schevernels H, Boehler CN: Motivational context for response inhibition influences proactive involvement of attention. Sci. Rep. 2016, 6:35122.
21. Verbruggen F, Logan GD: Proactive adjustments of response strategies in the stop-signal paradigm. J. Exp. Psychol. Hum. Percept. Perform. 2009, 35(3):835.
22. Ide JS, Shenoy P, Angela JY, Chiang-Shan RL: Bayesian prediction and evaluation in the anterior cingulate cortex. J. Neurosci. 2013, 33(5):2039-2047.
23. Boucher L, Palmeri TJ, Logan GD, Schall JD: Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychol. Rev. 2007, 114(2):376.
24. Salinas E, Stanford TR: The countermanding task revisited: fast stimulus detection is a key determinant of psychophysical performance. J. Neurosci. 2013, 33(13):5668-5685.
25. Verbruggen F, Stevens T, Chambers CD: Proactive and reactive stopping when distracted: An attentional account. J. Exp. Psychol. Hum. Percept. Perform. 2014, 40(4):1295.
26. Hampshire A: Putting the brakes on inhibitory models of frontal lobe function. NeuroImage 2015, 113:340-355.
27. Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD: The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 2006, 113(4):700.
28. Ratcliff R, McKoon G: The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 2008, 20(4):873-922.
29. Lambert C, Zrinzo L, Nagy Z, Lutti A, Hariz M, Foltynie T, Draganski B, Ashburner J, Frackowiak R: Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. NeuroImage 2012, 60(1):83-94.
30. Pessoa L, Kastner S, Ungerleider LG: Attentional control of the processing of neutral and emotional stimuli. Cogn. Brain Res. 2002, 15(1):31-45.
31. Yamanaka K, Yamamoto Y: Single-trial EEG power and phase dynamics associated with voluntary response inhibition. J. Cogn. Neurosci. 2010, 22(4):714-727.
32. Schmiedt-Fehr C, Basar-Eroglu C: Event-related delta and theta brain oscillations reflect age-related changes in both a general and a specific neuronal inhibitory mechanism. Clin. Neurophysiol. 2011, 122(6):1156-1167.
33. Nigbur R, Ivanova G, Stürmer B: Theta power as a marker for cognitive interference. Clin. Neurophysiol. 2011, 122(11):2185-2194.
34. Lavallee CF, Herrmann CS, Weerda R, Huster RJ: Stimulus-response mappings shape inhibition processes: a combined EEG-fMRI study of contextual stopping. PLOS ONE 2014, 9(4):e96159.
35. Savostyanov AN, Tsai AC, Liou M, Levin EA, Lee J-D, Yurganov AV, Knyazev GG: EEG-correlates of trait anxiety in the stop-signal paradigm. Neurosci. Lett. 2009, 449(2):112-116.
36. Swann N, Tandon N, Canolty R, Ellmore TM, McEvoy LK, Dreyer S, DiSano M, Aron AR: Intracranial EEG reveals a time-and frequency-specific role for the right inferior frontal gyrus and primary motor cortex in stopping initiated responses. J. Neurosci. 2009, 29(40):12675-12685.
37. Swann N, Poizner H, Houser M, Gould S, Greenhouse I, Cai W, Strunk J, George J, Aron AR: Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson's disease. J. Neurosci. 2011, 31(15):5721-5729.
38. Tottenham N, Tanaka JW, Leon AC, McCarry T, Nurse M, Hare TA, Marcus DJ, Westerlund A, Casey B, Nelson C: The NimStim set of facial expressions: judgments from untrained research participants. Psychiatry Res. 2009, 168(3):242-249.
39. Delorme A, Makeig S: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134(1):9-21.
40. Zavala B, Tan H, Little S, Ashkan K, Green AL, Aziz T, Foltynie T, Zrinzo L, Zaghloul K, Brown P: Decisions made with less evidence involve higher levels of corticosubthalamic nucleus theta band synchrony. J. Cogn. Neurosci. 2016, 28(6):811-825.
41. Zavala BA, Tan H, Little S, Ashkan K, Hariz M, Foltynie T, Zrinzo L, Zaghloul KA, Brown P: Midline frontal cortex low-frequency activity drives subthalamic nucleus oscillations during conflict. J. Neurosci. 2014, 34(21):7322-7333.
42. Luck SJ, Woodman GF, Vogel EK: Event-related potential studies of attention. Trends Cogn. Sci. 2000, 4(11):432-440.
43. Wiecki TV, Sofer I, Frank MJ: HDDM: Hierarchical Bayesian estimation of the drift-diffusion model in Python. Front. Neuroinform. 2013, 7:14.
44. Jahfari S, Ridderinkhof KR, Scholte HS: Spatial frequency information modulates response inhibition and decision-making processes. PLOS ONE 2013, 8(10):e76467.
45. White CN, Congdon E, Mumford JA, Karlsgodt KH, Sabb FW, Freimer NB, London ED, Cannon TD, Bilder RM, Poldrack RA: Decomposing decision components in the stop-signal task: a model-based approach to individual differences in inhibitory control. J. Cogn. Neurosci. 2014, 26(8):1601-1614.
46. Herz DM, Zavala BA, Bogacz R, Brown P: Neural correlates of decision thresholds in the human subthalamic nucleus. Curr. Biol. 2016, 26(7):916-920.
47. Pessoa L: How do emotion and motivation direct executive control? Trends Cogn. Sci. 2009, 13(4):160-166.
48. Knyazev GG: Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci. Biobehav. Rev. 2007, 31(3):377-395.
49. Zhao G, Zhang Y, Ge Y: Frontal EEG asymmetry and middle line power difference in discrete emotions. Front. Behav. Neurosci. 2018, 12.
50. Herz DM, Tan H, Brittain J-S, Fischer P, Cheeran B, Green AL, FitzGerald J, Aziz TZ, Ashkan K, Little S: Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic networks. Elife 2017, 6:e21481.
51. Zavala B, Damera S, Dong JW, Lungu C, Brown P, Zaghloul KA: Human subthalamic nucleus theta and beta oscillations entrain neuronal firing during sensorimotor conflict. Cereb. Cortex 2015, 27(1):496-508.
52. Xu M, Li Z, Ding C, Zhang J, Fan L, Diao L, Yang D: The divergent effects of fear and disgust on inhibitory control: an ERP study. PLOS ONE 2015, 10(6):e0128932.
53. Heathcote A, Lin Y-S, Reynolds A, Strickland L, Gretton M, Matzke D: Dynamic models of choice. Behav Res Methods 2019, 51(2):961-985.
54. Knyazev G, Slobodskoj-Plusnin JY, Bocharov A: Event-related delta and theta synchronization during explicit and implicit emotion processing. Neuroscience 2009, 164(4):1588-1600.
55. Cavanagh JF, Frank MJ: Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 2014, 18(8):414-421.
56. Cavanagh JF, Zambrano‐Vazquez L, Allen JJ: Theta lingua franca: A common mid‐frontal substrate for action monitoring processes. Psychophysiology 2012, 49(2):220-238.
57. Putman P, van Peer J, Maimari I, van der Werff S: EEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control, and affective traits. Biol. Psychol. 2010, 83(2):73-78.
58. Wessel JR, Conner CR, Aron AR, Tandon N: Chronometric electrical stimulation of right inferior frontal cortex increases motor braking. J. Neurosci. 2013, 33(50):19611-19619.
59. Wagner J, Wessel JR, Ghahremani A, Aron AR: Establishing a right frontal beta signature for stopping action in scalp EEG: implications for testing inhibitory control in other task contexts. J. Cogn. Neurosci. 2018, 30(1):107-118.
60. Fonken YM, Rieger JW, Tzvi E, Crone NE, Chang E, Parvizi J, Knight RT, Krämer UM: Frontal and motor cortex contributions to response inhibition: evidence from electrocorticography. J. Neurophysiol. 2016, 115(4):2224-2236.
61. Wang Y, Yang J, Yuan J, Fu A, Meng X, Li H: The impact of emotion valence on brain processing of behavioral inhibitory control: Spatiotemporal dynamics. Neurosci. Lett. 2011, 502(2):112-116.
62. Bloemendaal M, Zandbelt B, Wegman J, van de Rest O, Cools R, Aarts E: Contrasting neural effects of aging on proactive and reactive response inhibition. Neurobiol. Aging 2016, 46:96-106.
63. Makeig S, Debener S, Onton J, Delorme A: Mining event-related brain dynamics. Trends Cogn. Sci. 2004, 8(5):204-210.
64. Chien VS, Tsai AC, Yang HH, Tseng Y-L, Savostyanov AN, Liou M: Conscious and non-conscious representations of emotional faces in asperger’s syndrome. J. Vis. Exp. 2016.
65. Tsai AC, Savostyanov AN, Wu A, Evans JP, Chien VS, Yang H-H, Yang D-Y, Liou M: Recognizing syntactic errors in Chinese and English sentences: Brain electrical activity in Asperger's syndrome. Res. Autism Spectr. Disord. 2013, 7(7):889-905.
66. Başar E: Brain Function and Oscillations. Volume I: Brain Oscillations. Principles and Approaches, red. by H. Haken, ser. Springer Series in Synergetics Berlin, Heidelberg: Springer Berlin Heidelberg 1998.
67. Abdul Rahman A, Carroll DJ, Espy KA, Wiebe SA: Neural correlates of response inhibition in early childhood: Evidence from a Go/No-Go task. Dev. Neuropsychol. 2017, 42(5):336-350.
68. Debruille, JB, Touzel, M, Segal, J, Snidal, C, Renoult, L: A central component of the N1 event-related brain potential could index the early and automatic inhibition of the actions systematically activated by objects. Front. Behav. Neurosci. 2019, 13:95.
69. Klimesch W: Evoked alpha and early access to the knowledge system: the P1 inhibition timing hypothesis. Brain Res. 2011, 1408:52-71.
70. Yang S, Luo W, Zhu X, Broster LS, Chen T, Li J, Luo Y: Emotional content modulates response inhibition and perceptual processing. Psychophysiology 2014, 51(11):1139-1146.
71. Nieuwenhuis S, Yeung N, Van Den Wildenberg W, Ridderinkhof KR: Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cogn. Affect. Behav. Neurosci. 2003, 3(1):17-26.
72. Zhang W, Lu J: Time course of automatic emotion regulation during a facial Go/Nogo task. Biol. Psychol. 2012, 89(2):444-449.
73. Gopalan PRS, Loberg O, Hämäläinen JA, Leppänen PH: Attentional processes in typically developing children as revealed using brain event-related potentials and their source localization in Attention Network Test. Sci. Rep. 2019, 9(1):2940.
74. Savostyanov A, Tsai A, Zhigalov AY, Levin E, Lee J, Liou M: Trait anxiety and neurophysiology of executive control in the stop-signal paradigm. In.: Nova Science Publishers; 2012.
75. Zavala B, Jang A, Trotta M, Lungu CI, Brown P, Zaghloul KA: Cognitive control involves theta power within trials and beta power across trials in the prefrontal-subthalamic network. Brain 2018, 141(12):3361-3376.
76. Wessel JR, Aron AR: Inhibitory motor control based on complex stopping goals relies on the same brain network as simple stopping. NeuroImage 2014, 103:225-234.
77. González-Villar AJ, Bonilla FM, Carrillo-de-la-Peña MT: When the brain simulates stopping: Neural activity recorded during real and imagined stop-signal tasks. Cogn. Affect. Behav. Neurosci. 2016, 16(5):825-835.
78. Pessoa L, Padmala S, Kenzer A, Bauer A: Interactions between cognition and emotion during response inhibition. Emotion 2012, 12(1):192.
79. Senderecka M, Szewczyk J, Wichary S, Kossowska M: Individual differences in decisiveness: ERP correlates of response inhibition and error monitoring. Psychophysiology 2018:e13198.
80. Meaux E, Roux S, Batty M: Early visual ERPs are influenced by individual emotional skills. Soc. Cogn. Affect. Neurosci. 2013, 9(8):1089-1098.
81. Luo W, Feng W, He W, Wang N-Y, Luo Y-J: Three stages of facial expression processing: ERP study with rapid serial visual presentation. NeuroImage 2010, 49(2):1857-1867.
82. Wauthia E, Rossignol M: Emotional processing and attention control impairments in children with anxiety: an integrative review of event-related potentials findings. Front. Psychol. 2016, 7:562.
83. Chikazoe J, Jimura K, Hirose S, Yamashita K-i, Miyashita Y, Konishi S: Preparation to inhibit a response complements response inhibition during performance of a stop-signal task. J. Neurosci. 2009, 29(50):15870-15877.
84. Pires L, Leitão J, Guerrini C, Simões MR: Event-related brain potentials in the study of inhibition: cognitive control, source localization and age-related modulations. Neuropsychol. Rev. 2014, 24(4):461-490.
85. Morris JS, Öhman A, Dolan RJ: Conscious and unconscious emotional learning in the human amygdala. Nature 1998, 393(6684):467.
86. Pessoa L, Adolphs R: Emotion processing and the amygdala: from a'low road'to'many roads' of evaluating biological significance. Nat. Rev. Neurosci. 2010, 11(11):773.
87. Ramos-Loyo J, Llamas-Alonso LA, González-Garrido AA, Hernández-Villalobos J: Emotional contexts exert a distracting effect on attention and inhibitory control in female and male adolescents. Sci. Rep. 2017, 7(1):2082.
88. Elliott R, Rubinsztein JS, Sahakian BJ, Dolan RJ: Selective attention to emotional stimuli in a verbal go/no-go task: an fMRI study. NeuroReport 2000, 11(8):1739-1744.
89. Clark VP, Fan S, Hillyard SA: Identification of early visual evoked potential generators by retinotopic and topographic analyses. Hum. Brain Mapp. 1994, 2(3):170-187.
90. Kravitz DJ, Saleem KS, Baker CI, Mishkin M: A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 2011, 12(4):217.
91. Yamaguchi S, Onoda K: Interaction between emotion and attention systems. Front. Neurosci. 2012, 6:139.
92. Wessel JR, Aron AR: Unexpected events induce motor slowing via a brain mechanism for action-stopping with global suppressive effects. J. Neurosci. 2013, 33(47):18481-18491.
93. Verbruggen F, De Houwer J: Do emotional stimuli interfere with response inhibition? Evidence from the stop signal paradigm. Cogn. Emot. 2007, 21(2):391-403.
94. Chiu PH, Holmes AJ, Pizzagalli DA: Dissociable recruitment of rostral anterior cingulate and inferior frontal cortex in emotional response inhibition. NeuroImage 2008, 42(2):988-997.
95. Carstensen LL, Pasupathi M, Mayr U, Nesselroade JR: Emotional experience in everyday life across the adult life span. J. Pers. Soc. Psychol. 2000, 79(4):644.
96. Kleerekooper I, van Rooij SJ, van den Wildenberg WP, de Leeuw M, Kahn RS, Vink M: The effect of aging on fronto-striatal reactive and proactive inhibitory control. NeuroImage 2016, 132:51-58.
97. Dolcos F, Denkova E: Current emotion research in cognitive neuroscience: linking enhancing and impairing effects of emotion on cognition. Emot Rev 2014, 6(4):362-375.
98. Jacques PS, Dolcos F, Cabeza R: Effects of aging on functional connectivity of the amygdala during negative evaluation: a network analysis of fMRI data. Neurobiol. Aging 2010, 31(2):315-327.
99. Nashiro K, Sakaki M, Mather M: Age differences in brain activity during emotion processing: reflections of age-related decline or increased emotion regulation. Gerontology 2012, 58(2):156-163.
100. Zhang R, Geng X, Lee TM: Large-scale functional neural network correlates of response inhibition: an fMRI meta-analysis. Brain Struct. Funct. 2017, 222(9):3973-3990.
101. Jahfari S, Waldorp L, van den Wildenberg WP, Scholte HS, Ridderinkhof KR, Forstmann BU: Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition. J. Neurosci. 2011, 31(18):6891-6899.
102. Tsvetanov KA, Ye Z, Hughes L, Samu D, Treder MS, Wolpe N, Tyler LK, Rowe JB: Activity and connectivity differences underlying inhibitory control across the adult life span. J. Neurosci. 2018, 38(36):7887-7900.
103. Hänggi J, Lohrey C, Drobetz R, Baetschmann H, Forstmeier S, Maercker A, Jäncke L: Strength of structural and functional frontostriatal connectivity predicts self-control in the healthy elderly. Front. Aging Neurosci. 2016, 8:307.
104. Reuter-Lorenz PA, Cappell KA: Neurocognitive aging and the compensation hypothesis. Curr. Dir. Psychol. Sci. 2008, 17(3):177-182.
105. Rae CL, Hughes LE, Weaver C, Anderson MC, Rowe JB: Selection and stopping in voluntary action: a meta-analysis and combined fMRI study. NeuroImage 2014, 86:381-391.
106. Depue BE, Orr J, Smolker H, Naaz F, Banich M: The organization of right prefrontal networks reveals common mechanisms of inhibitory regulation across cognitive, emotional, and motor processes. Cereb. Cortex 2016, 26(4):1634-1646.
107. Peterburs J, Desmond JE: The role of the human cerebellum in performance monitoring. CURR OPIN NEUROBIOL 2016, 40:38-44.
108. Miquel M, Nicola SM, Gil-Miravet I, Guarque-Chabrera J, Sanchez-Hernandez A: A Working Hypothesis for the Role of the Cerebellum in Impulsivity and Compulsivity. Front. Behav. Neurosci. 2019, 13.
109. Coxon JP, Goble DJ, Leunissen I, Van Impe A, Wenderoth N, Swinnen SP: Functional brain activation associated with inhibitory control deficits in older adults. Cereb. Cortex 2016, 26(1):12-22.
110. Kanwisher N, Yovel G: The fusiform face area: a cortical region specialized for the perception of faces. Philos. Trans. R. Soc. B 2006, 361(1476):2109-2128.
111. Coxon JP, Goble DJ, Van Impe A, De Vos J, Wenderoth N, Swinnen SP: Reduced basal ganglia function when elderly switch between coordinated movement patterns. Cereb. Cortex 2010, 20(10):2368-2379.
112. Phillips ML, Young AW, Scott S, Calder AJ, Andrew C, Giampietro V, Williams SC, Bullmore ET, Brammer M, Gray J: Neural responses to facial and vocal expressions of fear and disgust. Philos. Trans. R. Soc. B 1998, 265(1408):1809-1817.
113. Haxby JV, Hoffman EA, Gobbini MI: The distributed human neural system for face perception. Trends Cogn. Sci. 2000, 4(6):223-233.
114. Menon V, Adleman NE, White CD, Glover GH, Reiss AL: Error‐related brain activation during a Go/NoGo response inhibition task. Hum. Brain Mapp. 2001, 12(3):131-143.
115. Zilverstand A, Huang AS, Alia-Klein N, Goldstein RZ: Neuroimaging impaired response inhibition and salience attribution in human drug addiction: a systematic review. Neuron 2018, 98(5):886-903.
116. Spielberg JM, Miller GA, Heller W, Banich MT: Flexible brain network reconfiguration supporting inhibitory control. Proc. Natl. Acad. Sci. U.S.A. 2015, 112(32):10020-10025.
117. Sharp D, Bonnelle V, De Boissezon X, Beckmann C, James S, Patel M, Mehta MA: Distinct frontal systems for response inhibition, attentional capture, and error processing. Proc. Natl. Acad. Sci. U.S.A. 2010, 107(13):6106-6111.
118. Zhen Z, Fang H, Liu J: The hierarchical brain network for face recognition. PLOS ONE 2013, 8(3).
119. Jiang R, Zuo N, Ford JM, Qi S, Zhi D, Zhuo C, Xu Y, Fu Z, Bustillo J, Turner JA: Task-induced brain connectivity promotes the detection of individual differences in brain-behavior relationships. NeuroImage 2020, 207:116370.
120. Li C-SR, Yan P, Sinha R, Lee T-W: Subcortical processes of motor response inhibition during a stop signal task. NeuroImage 2008, 41(4):1352-1363.
121. Congdon E, Mumford JA, Cohen JR, Galvan A, Aron AR, Xue G, Miller E, Poldrack RA: Engagement of large-scale networks is related to individual differences in inhibitory control. NeuroImage 2010, 53(2):653-663.
122. Cai W, Ryali S, Chen T, Li C-SR, Menon V: Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets. J. Neurosci. 2014, 34(44):14652-14667.
123. Ramautar JR, Slagter HA, Kok A, Ridderinkhof KR: Probability effects in the stop-signal paradigm: the insula and the significance of failed inhibition. Brain Res. 2006, 1105(1):143-154.
124. Dambacher F, Sack AT, Lobbestael J, Arntz A, Brugman S, Schuhmann T: A network approach to response inhibition: dissociating functional connectivity of neural components involved in action restraint and action cancellation. Eur. J. Neurosci. 2014, 39(5):821-831.
125. van Rooij D, Hartman CA, Mennes M, Oosterlaan J, Franke B, Rommelse N, Heslenfeld D, Faraone SV, Buitelaar JK, Hoekstra PJ: Altered neural connectivity during response inhibition in adolescents with attention-deficit/hyperactivity disorder and their unaffected siblings. Neuroimage Clin. 2015, 7:325-335.
126. Dolcos F, Katsumi Y, Moore M, Berggren N, de Gelder B, Derakshan N, Hamm AO, Koster EH, Ladouceur CD, Okon-Singer H: Neural correlates of emotion-attention interactions: From perception, learning, and memory to social cognition, individual differences, and training interventions. Neurosci. Biobehav. Rev. 2020, 108:559-601.
127. Xiu D, Geiger MJ, Klaver P: Emotional face expression modulates occipital-frontal effective connectivity during memory formation in a bottom-up fashion. Front. Behav. Neurosci. 2015, 9:90.
128. Kuniecki M, Wołoszyn K, Domagalik A, Pilarczyk J: Disentangling brain activity related to the processing of emotional visual information and emotional arousal. Brain Struct. Funct. 2018, 223(4):1589-1597.
129. Hampshire A, Chamberlain SR, Monti MM, Duncan J, Owen AM: The role of the right inferior frontal gyrus: inhibition and attentional control. NeuroImage 2010, 50(3):1313-1319.
130. King BR, Fogel SM, Albouy G, Doyon J: Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults. Front. Hum. Neurosci. 2013, 7:142.
131. Wessel JR: β-bursts reveal the trial-to-trial dynamics of movement initiation and cancellation. J. Neurosci. 2020, 40(2):411-423.
132. Sebastian A, Schick A, Sandner M, Werzlau RM, Chmitorz A, Lieb K, Tüscher O: Perceived threat modulates inhibitory performance. Emotion 2020.
133. Matzke D, Logan GD, Heathcote A: A Cautionary Note on Evidence-Accumulation Models of Response Inhibition in the Stop-Signal Paradigm. 2020.
134. Evans NJ, Wagenmakers E-J: Evidence accumulation models: Current limitations and future directions. 2019.
135. Sporns O: Brain connectivity. Scholarpedia 2007, 2(10):4695.
136. Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack RA: Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J. Neurosci. 2007, 27(14):3743-3752.
137. Monterosso JR, Aron AR, Cordova X, Xu J, London ED: Deficits in response inhibition associated with chronic methamphetamine abuse. Drug Alcohol Depend. 2005, 79(2):273-277.
138. Sagaspe P, Schwartz S, Vuilleumier P: Fear and stop: a role for the amygdala in motor inhibition by emotional signals. NeuroImage 2011, 55(4):1825-1835.
139. Hung Y, Gaillard SL, Yarmak P, Arsalidou M: Dissociations of cognitive inhibition, response inhibition, and emotional interference: Voxelwise ALE meta‐analyses of fMRI studies. Hum. Brain Mapp. 2018, 39(10):4065-4082.
140. Friston KJ, Harrison L, Penny W: Dynamic causal modelling. NeuroImage 2003, 19(4):1273-1302.
141. Ma L, Steinberg JL, Cunningham KA, Lane SD, Kramer LA, Narayana PA, Kosten TR, Bechara A, Moeller FG: Inhibitory behavioral control: a stochastic dynamic causal modeling study using network discovery analysis. Brain Connect. 2015, 5(3):177-186.
142. Ma L, Steinberg JL, Cunningham KA, Lane SD, Bjork JM, Neelakantan H, Price AE, Narayana PA, Kosten TR, Bechara A: Inhibitory behavioral control: a stochastic dynamic causal modeling study comparing cocaine dependent subjects and controls. Neuroimage Clin. 2015, 7:837-847.
143. Limongi R, Pérez FJ: Successful and unsuccessful response inhibitions differentially affect the effective connectivity between insular, presupplementary-motor, and striatal areas. Behav. Neurosci. 2017, 131(1):20.
144. Zhang F, Iwaki S: Common neural network for different functions: an investigation of proactive and reactive inhibition. Front. Behav. Neurosci. 2019, 13:124.
145. Rae CL, Hughes LE, Anderson MC, Rowe JB: The prefrontal cortex achieves inhibitory control by facilitating subcortical motor pathway connectivity. J. Neurosci. 2015, 35(2):786-794.
146. Tei S, Fujino J, Kawada R, Jankowski KF, Kauppi J-P, van den Bos W, Abe N, Sugihara G, Miyata J, Murai T: Collaborative roles of temporoparietal junction and dorsolateral prefrontal cortex in different types of behavioural flexibility. Sci. Rep. 2017, 7(1):1-8.
147. Kahnt T, Tobler PN: Salience signals in the right temporoparietal junction facilitate value-based decisions. J. Neurosci. 2013, 33(3):863-869.
148. Ravizza SM, Carter CS: Shifting set about task switching: Behavioral and neural evidence for distinct forms of cognitive flexibility. Neuropsychologia 2008, 46(12):2924-2935.
149. Friston KJ, Litvak V, Oswal A, Razi A, Stephan KE, Van Wijk BC, Ziegler G, Zeidman P: Bayesian model reduction and empirical Bayes for group (DCM) studies. NeuroImage 2016, 128:413-431.
150. Zeidman P, Jafarian A, Corbin N, Seghier ML, Razi A, Price CJ, Friston KJ: A guide to group effective connectivity analysis, part 1: First level analysis with DCM for fMRI. NeuroImage 2019, 200:174-190.
151. Li G, Liu Y, Zheng Y, Li D, Liang X, Chen Y, Cui Y, Yap PT, Qiu S, Zhang H: Large‐scale dynamic causal modeling of major depressive disorder based on resting‐state functional magnetic resonance imaging. Hum. Brain Mapp. 2019.
152. Zeidman P, Jafarian A, Seghier ML, Litvak V, Cagnan H, Price CJ, Friston KJ: A guide to group effective connectivity analysis, part 2: Second level analysis with PEB. NeuroImage 2019, 200:12-25.
153. Wolpe N, Ingram JN, Tsvetanov KA, Geerligs L, Kievit RA, Henson RN, Wolpert DM, Rowe JB: Ageing increases reliance on sensorimotor prediction through structural and functional differences in frontostriatal circuits. Nat. Commun. 2016, 7(1):1-11.
154. Bettio LE, Rajendran L, Gil-Mohapel J: The effects of aging in the hippocampus and cognitive decline. Neurosci. Biobehav. Rev. 2017, 79:66-86.
155. Raz N, Rodrigue KM, Kennedy KM, Head D, Gunning-Dixon F, Acker JD: Differential aging of the human striatum: longitudinal evidence. Am. J. Neuroradiol. 2003, 24(9):1849-1856.
156. de Chastelaine M, Mattson JT, Wang TH, Donley BE, Rugg MD: The relationships between age, associative memory performance, and the neural correlates of successful associative memory encoding. Neurobiol. Aging 2016, 42:163-176.
157. Klaus J, Hartwigsen G: Dissociating semantic and phonological contributions of the left inferior frontal gyrus to language production. Hum. Brain Mapp. 2019, 40(11):3279-3287.
158. Tops M, Boksem MA: A potential role of the inferior frontal gyrus and anterior insula in cognitive control, brain rhythms, and event-related potentials. Front. Psychol. 2011, 2:330.
159. Schmidt CC, Timpert DC, Arend I, Vossel S, Dovern A, Saliger J, Karbe H, Fink GR, Henik A, Weiss PH: Preserved but less efficient control of response interference after unilateral lesions of the striatum. Front. Hum. Neurosci. 2018, 12:414.
160. Verbruggen F, Aron AR, Band GP, Beste C, Bissett PG, Brockett AT, Brown JW, Chamberlain SR, Chambers CD, Colonius H: A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. Elife 2019, 8:e46323.