簡易檢索 / 詳目顯示

研究生: 呂紹傑
Lu, Shao-Chieh
論文名稱: 氧化鋅奈米薄膜混摻氧化鋅-石墨烯奈米複合材料於光觸媒與太陽能電池之研究
ZnO/graphene composite blended ZnO nanoparticle films for photocatalyst and solar cell applications
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 83
中文關鍵詞: 石墨烯氧化鋅複合材料光降解染料敏化太陽能電池
外文關鍵詞: reduced graphene oxide, zinc oxide, composite, photodegradation, dye sensitized solar cell
相關次數: 點閱:80下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在合成氧化鋅/石墨烯奈米複合材料,且以此材料應用於光觸媒有機物降解反應與染料敏化太陽能電池。本研究選擇溶液製程進行氧化石墨烯製備,以AFM、XRD進行氧化程度的分析。再利用維他命C作為還原劑,以綠色製程方式還原氧化石墨烯,利用XPS、拉曼光譜、紫外光-可見光吸收光譜,進行石墨烯的還原分析。為改善還原氧化石墨烯表面的官能基被移除後,容易產生聚集,難以分散在溶劑中之問題,本研究成長5 nm氧化鋅奈米粒子於石墨烯表面,改變表面性質,幫助複合材料分散在溶劑中,以減少聚集的情況發生,並進一步利用SEM與TEM進行複合材料的分析。最後利用市售的氧化鋅奈米顆粒混摻本研究合成之氧化鋅/石墨烯複合材料,利用液滴塗佈方式,以ITO導電玻璃為基板,製備成薄膜,進行有機物光降解與染料敏化太陽能電池光陽極應用。

    In this study, zinc oxide/reduced graphene oxide composites were synthesized for the applications to phtotcatalysts and dye sensitized solar cells (DSSCs). Graphene oxide was synthesized using solution process. The oxidation degree of graphene oxide was determined by Atomic Force Microscope (AFM) and X-ray diffraction (XRD). A green reductant—vitamin C was used to reduce the graphene oxide. X-ray photoelectron spectrometer (XPS), Raman and UV-visible adsorption were employed to analyze the reduction degree of reduced graphene oxide (rGO). In order to improve the issues of stacking and poor dispersion in solution after removing the oxygen group, tiny zinc oxide nanoparticles (NPs) were synthesized on the rGO surface to modify the surface properties for dispersion in solvent. Characterizations of the zinc oxid/rGO composites were performed using by SEM and TEM. The composites were further blended with commercial zinc oxide NPs to fabricate a thin film on the ITO substrate by drop casting. The influences of rGO addition in ZnO NP film on the performances of DSSC anode and photodegradation were investigated.

    摘要 I Abstract II 謝誌 III 目次 V 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 前言 1 1-2 石墨烯 2 1-3 太陽能電池與光觸媒 3 1-4 研究動機 5 第二章 文獻回顧 6 2-1 氧化石墨烯 6 2-1-1 氧化石墨烯的製備 6 2-1-2 氧化石墨烯的還原 8 2-2 石墨烯-無機材料複合物 10 2-3 光觸媒 14 2-3-1 異相光催化反應 14 2-3-2 半導體觸媒 14 2-3-3 反應動力模式 16 2-3-4 石墨烯於光觸媒之應用 19 2-4 染料敏化太陽能電池 24 2-4-1 工作原理 24 2-4-2 石墨烯於太陽能電池之應用 25 第三章 實驗步驟與研究方法 29 3-1 研究材料 29 3-1-1 合成氧化石墨烯之材料 29 3-1-2 合成氧化鋅/石墨烯奈米複合物之材料 29 3-1-3 製備氧化鋅/石墨烯奈米薄膜之材料 29 3-1-4 光觸媒催化反應之材料 30 3-1-5 組裝染料敏化太陽能電池之材料 30 3-2 實驗步驟 32 3-2-1 合成氧化石墨烯 32 3-2-2 還原氧化石墨烯 32 3-2-3 合成氧化鋅/石墨烯奈米複合物 33 3-2-4 製備氧化鋅奈米薄膜之材料 33 3-2-5 甲基橙之分解 34 3-2-6 組裝染料敏化太陽能電池 35 3-3 分析與鑑定 37 3-3-1 X光繞射分析 37 3-3-2 紫外光-可見光吸收光譜儀 37 3-3-3 掃描式電子顯微鏡 38 3-3-4 穿透式電子顯微鏡 39 3-3-5 化學分析電子光譜儀 42 3-3-6 拉曼能光譜分析儀 43 3-3-7 太陽能效率量測 43 3-3-8 光強度調制光譜分析 44 第四章 ZnO/rGO複合材料於有機物光降解與染料敏化太陽能電池之應用46 4-1 rGO之製備與分析 46 4-1-1 氧化石墨烯之合成分析 46 4-1-2 rGO之製備與分析 48 4-2 氧化鋅/rGO奈米複合材料之製備與分析 53 4-2-1 氧化鋅/rGO奈米複合材料之合成 53 4-2-2 氧化鋅奈米薄膜混摻氧化鋅/rGO複合材料之製備 58 4-3 ZnO/rGO複合材料於有機物光降解之應用 65 4-3-1 甲基橙之全光譜圖與濃度校正曲線 65 4-3-2 ZnO/rGO複合材料混摻ZnO奈米顆粒薄膜於光降解催化反應之應用 67 4-3-3 ZnO/rGO複合材料混摻ZnO奈米顆粒薄膜於之DSSC之應用 72 第五章 結論 76 第六章 參考文獻 78

    [1] L. L. Zhang and X. S. Zhao, "Carbon-based materials as supercapacitor electrodes," Chemical Society Reviews, 38, 2520-2531, 2009.

    [2] Q. Xiang, J. Yu, and M. Jaroniec, "Graphene-based semiconductor photocatalysts," Chemical Society Reviews, 41, 782-796, 2012.

    [3] R. Leary and A. Westwood, "Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis," Carbon, 49, 741-772, 2011.

    [4] X.-Y. Zhang, H.-P. Li, X.-L. Cui, and Y. Lin, "Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting," Journal of Materials Chemistry, 20, 2801-2806, 2010.

    [5] N. D. Mermin, "Crystalline order in 2 dimenstions," Physical Review, 176, 250-253, 1968.

    [6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, 306, 666-669, 2004.

    [7] M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, "Approaching the Dirac Point in High-Mobility Multilayer Epitaxial Graphene," Physical Review Letters, 101, 267601-267604, 2008.

    [8] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior thermal conductivity of single-layer graphene," Nano Letters, 8, 902-907, 2008.

    [9] C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics," Journal of Physical Chemistry B, 108, 19912-19916, 2004.

    [10] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, 324, 1312-1314, 2009.

    [11] W. S. Hummers and R. E. Offeman, "Preparation of graphitic oxide," Journal of the American Chemical Society, 80, 1339-1339, 1958.

    [12] D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide," Chemical Society Reviews, 39, 228-240, 2010.

    [13] Y.-B. Tang, C.-S. Lee, J. Xu, Z.-T. Liu, Z.-H. Chen, Z. He, Y.-L. Cao, G. Yuan, H. Song, L. Chen, L. Luo, H.-M. Cheng, W.-J. Zhang, I. Bello, and S.-T. Lee, "Incorporation of Graphenes in Nanostructured TiO2 Films via Molecular Grafting for Dye-Sensitized Solar Cell Application," ACS Nano, 4, 3482-3488, 2010.

    [14] D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L. V. Saraf, J. Zhang, I. A. Aksay, and J. Liu, "Self-Assembled TiO2-Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion," ACS Nano, 3, 907-914, 2009.

    [15] C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, and Y. Feng, "Synthesis of Visible-Light Responsive Graphene Oxide/TiO2 Composites with p/n Heterojunction," ACS Nano, 4, 6425-6432, 2010.

    [16] Y. H. Ng, A. Iwase, A. Kudo, and R. Amal, "Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting," Journal of Physical Chemistry Letters, 1, 2607-2612, 2010.

    [17] M. Gratzel, "Photoelectrochemical cells," Nature, 414, 338-344, 2001.

    [18] D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, "Emissive ZnO-graphene quantum dots for white-light-emitting diodes," Nature Nanotechnology, 7, 465-471, 2012.

    [19] H. Y. He, J. Klinowski, M. Forster, and A. Lerf, "A new structural model for graphite oxide," Chemical Physics Letters, 287, 53-56, 1998.

    [20] H. Bai, C. Li, and G. Shi, "Functional Composite Materials Based on Chemically Converted Graphene," Advanced Materials, 23, 1089-1115, 2011.

    [21] M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, "Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles," Carbon, 42, 2929-2937, 2004.

    [22] R. Y. N. Gengler, K. Spyrou, and P. Rudolf, "A roadmap to high quality chemically prepared graphene," Journal of Physics D-Applied Physics, 43, 2010.

    [23] V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, "High-throughput solution processing of large-scale graphene," Nature Nanotechnology, 4, 25-29, 2009.

    [24] J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, and X. Zhang, "Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid," Chemistry of Materials, 22, 2213-2218, 2010.

    [25] M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme, and I. A. Aksay, "Single sheet functionalized graphene by oxidation and thermal expansion of graphite," Chemistry of Materials, 19, 4396-4404, 2007.

    [26] Y. Zhou, Q. Bao, L. A. L. Tang, Y. Zhong, and K. P. Loh, "Hydrothermal Dehydration for the "Green" Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties," Chemistry of Materials, 21, 2950-2956, 2009.

    [27] H. Wang, J. T. Robinson, X. Li, and H. Dai, "Solvothermal Reduction of Chemically Exfoliated Graphene Sheets," Journal of the American Chemical Society, 131, 9910-9911, 2009.

    [28] Y. Matsumoto, M. Koinuma, S. Ida, S. Hayami, T. Taniguchi, K. Hatakeyama, H. Tateishi, Y. Watanabe, and S. Amano, "Photoreaction of Graphene Oxide Nanosheets in Water," Journal of Physical Chemistry C, 115, 19280-19286, 2011.

    [29] H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, and X.-H. Xia, "A Green Approach to the Synthesis of Graphene Nanosheets," ACS Nano, 3, 2653-2659, 2009.

    [30] D. Li, M. B. Mueller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nature Nanotechnology, 3, 101-105, 2008.

    [31] H.-B. Zhang, W.-G. Zheng, Q. Yan, Y. Yang, J.-W. Wang, Z.-H. Lu, G.-Y. Ji, and Z.-Z. Yu, "Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding," Polymer, 51, 1191-1196, 2010.

    [32] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo, "Reduction of graphene oxide via L-ascorbic acid," Chemical Communications, 46, 1112-1114, 2010.

    [33] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, "High-yield production of graphene by liquid-phase exfoliation of graphite," Nature Nanotechnology, 3, 563-568, 2008.

    [34] K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay, and R. Car, "Raman spectra of graphite oxide and functionalized graphene sheets," Nano Letters, 8, 36-41, 2008.

    [35] X. Huang, X. Qi, F. Boey, and H. Zhang, "Graphene-based composites," Chemical Society Reviews, 41, 666-686, 2012.

    [36] S. Bai and X. Shen, "Graphene-inorganic nanocomposites," RSC Advances, 2, 64-98, 2012.

    [37] R. Muszynski, B. Seger, and P. V. Kamat, "Decorating graphene sheets with gold nanoparticles," Journal of Physical Chemistry C, 112, 5263-5266, 2008.

    [38] H. Song, L. Zhang, C. He, Y. Qu, Y. Tian, and Y. Lv, "Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors," Journal of Materials Chemistry, 21, 5972-5977, 2011.

    [39] S. Yang, X. Feng, S. Ivanovici, and K. Muellen, "Fabrication of Graphene-Encapsulated Oxide Nanoparticles: Towards High-Performance Anode Materials for Lithium Storage," Angewandte Chemie-International Edition, 49, 8408-8411, 2010.

    [40] J. M. Herrmann, "Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants," Catalysis Today, 53, 115-129, 1999.

    [41] X. Chen and S. S. Mao, "Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications," Chemical Reviews, 107, 2891-2959, 2007.

    [42] C. S. Turchi and D. F. Ollis, "Photocatalytic degradation of organic-water contaminants - mechanisms involving hydroxyl radical attack," Journal of Catalysis, 122, 178-192, 1990.

    [43] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J. M. Herrmann, "Photocatalytic degradation pathway of methylene blue in water," Applied Catalysis B-Environmental, 31, 145-157, 2001.

    [44] Y. M. Xu and C. H. Langford, "UV- or visible-light-induced degradation of X3B on TiO2 nanoparticles: The influence of adsorption," Langmuir, 17, 897-902, 2001.

    [45] N. Kislov, J. Lahiri, H. Verma, D. Y. Goswami, E. Stefanakos, and M. Batzill, "Photocatalytic Degradation of Methyl Orange over Single Crystalline ZnO: Orientation Dependence of Photoactivity and Photostability of ZnO," Langmuir, 25, 3310-3315, 2009.

    [46] H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, "P25-Graphene Composite as a High Performance Photocatalyst," ACS Nano, 4, 380-386, 2010.

    [47] T.-F. Yeh, J.-M. Syu, C. Cheng, T.-H. Chang, and H. Teng, "Graphite Oxide as a Photocatalyst for Hydrogen Production from Water," Advanced Functional Materials, 20, 2255-2262, 2010.

    [48] T.-F. Yeh, F.-F. Chan, C.-T. Hsieh, and H. Teng, "Graphite Oxide with Different Oxygenated Levels for Hydrogen and Oxygen Production from Water under Illumination: The Band Positions of Graphite Oxide," Journal of Physical Chemistry C, 115, 22587-22597, 2011.

    [49] H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, "Evaluation of solution-processed reduced graphene oxide films as transparent conductors," ACS Nano, 2, 463-470, 2008.

    [50] X. Wang, L. Zhi, and K. Muellen, "Transparent, conductive graphene electrodes for dye-sensitized solar cells," Nano Letters, 8, 323-327, 2008.

    [51] H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, and Z. Zheng, "A Transparent, Flexible, Low-Temperature, and Solution-Processible Graphene Composite Electrode," Advanced Functional Materials, 20, 2893-2902, 2010.

    [52] W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, "Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells," Electrochemistry Communications, 10, 1555-1558, 2008.

    [53] N. Yang, J. Zhai, D. Wang, Y. Chen, and L. Jiang, "Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells," ACS Nano, 4, 887-894, 2010.

    [54] M. J. Fernandez-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, and J. M. D. Tascon, "Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions," Journal of Physical Chemistry C,114, 6426-6432, 2010.

    [55] N. A. Kotov, I. Dekany, and J. H. Fendler, "Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: Transition between conductive and non-conductive states," Advanced Materials, 8, 637-641, 1996.

    [56] M. Fang, K. Wang, H. Lu, Y. Yang, and S. Nutt, "Single-layer graphene nanosheets with controlled grafting of polymer chains," Journal of Materials Chemistry, 20, 1982-1992, 2010.

    [57] J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, and Z. Wei, "Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage," ACS Nano, 4, 5019-5026, 2010.

    [58] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, and I. A. Aksay, "Functionalized single graphene sheets derived from splitting graphite oxide," Journal of Physical Chemistry B, 110, 8535-8539, 2006.

    [59] S. Pei and H.-M. Cheng, "The reduction of graphene oxide," Carbon, 50, 3210-3228, 2012.

    [60] C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, "Graphene: The New Two-Dimensional Nanomaterial," Angewandte Chemie-International Edition, 48, 7752-7777, 2009.

    [61] F. Tuinstra and J. L. Koenig, "Raman spectrum of graphite," Journal of Chemical Physics, 53, 1126-1130, 1970.

    [62] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, 45, 1558-1565, 2007.

    [63] Y.-H. Sung, V. D. Frolov, S. M. Pimenov, and J.-J. Wu, "Investigation of charge transfer in Au nanoparticle-ZnO nanosheet composite photocatalysts," Physical Chemistry Chemical Physics, 14, 14492-14494, 2012.

    [64] I. M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S. G. Neophytides, and P. Falaras, "Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation," Journal of Catalysis, 220, 127-135, 2003.

    下載圖示 校內:2018-08-19公開
    校外:2018-08-19公開
    QR CODE