簡易檢索 / 詳目顯示

研究生: 周柏因
Chou, Bo-Ing
論文名稱: 一個運用在市區交通監視上之即時車輛分類和計數演算法
A Real-time Vehicle Classification and Counting Algorithm for Downtown Traffic Monitoring
指導教授: 何裕琨
Ho, Yu-Kun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 72
中文關鍵詞: 車輛分類車輛計數背景更新特徵值比對
外文關鍵詞: Vehicle Classification, Vehicle Counting, Background update
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在今日科技文明社會中每天均需使用道路,所以普遍裝設了交通監視系統以便能取得即時的路況資訊,甚至偵測出意外之交通事故;針對此需求本論文提出了一個運用在市區交通監視上之即時車輛計數和分類演算法以滿足此方面之需要。
    對於即時之市區道路視訊影像,本論文首先利用中間值濾波器選取合適亮度值建立一可定時更新之背景影像,並藉以擷取出前景移動物件經過相關前置處理後,根據移動物件區塊所在位置比對追蹤前張影像可能出現之範圍,使用其相互之距離、形狀及色彩資訊等特徵值移動物件作為車種區分的判斷和黏合狀況的偵測,以構設此一可區分車輛種類之追蹤演算法;同時對於前後車距過近、車輛暫停路中或機車行駛快車道以及蛇行等異常行駛狀況作分析以便監視可能發生之交通事故之狀況。由於此演算法是利用影像中移動物件可能出現範圍作預測,所以可減少不需要比對之移動物件之運算,因此甚為快速。
      本論文所提出的車輛分類及計數演算法經不同路況之交通視訊影像實驗驗證,確實可運用於一般市區交通的各種路況,具有一定水準之準確率,除了可即時計算各種車輛數目,且對於異常駕駛狀況亦具追蹤之效果。

    In nowadays, technology is civilized. Most people make use of road in their daily life every day, therefore; it’s simple to set traffic monitoring system for getting real-time traffic information even detecting traffic accidents.For the requirement, this paper proposed a Real-time Vehicle Classification and Counting Algorithm for Downtown Traffic Monitoring.
    This way could reduce moving object’s tracking and matching time, when the traffic jam happened is more remarkable. First, utilize an median filter to establish a reliable background model , then extract the foreground object for adjacent downtown traffic image, after take out the foreground object, noise filtering and shadow removal process, according to the Boundingbox of pixel distribute information as a vehicle-kind judged and occlusion detect.Also, established the centroid of moving object to track and match, based on the location of object region to predict the multi segmented scene where we search, and proceeding compare the dual of boundingbox’s c distance and the average value error to decide whether both of them are the same moving object then finally statistic the quantity information of renewal car.
    The paper what we proposed to the vehicle counting could apply on many conditions in the downtown traffic scene. The method keeps up good performance and could calculate car quantity fast. Besides counting vehicles number, the system also effective on detecting and tracking abnormal driving.

    第一章 緒論-----------------------------------------------1 1.1 研究動機------------------------------------------1 1.2 常見車輛分類計數運用技術簡介------------------------3 1.3 論文簡介------------------------------------------8 第二章 相關背景-------------------------------------------10 2.1 影像背景相減模式----------------------------------10 2.1.1 利用中間值濾波器的背景更新模式---------------------10 2.1.2 移動物件偵測-------------------------------------11 2.2 高斯陰影移除處理----------------------------------12 2.3 邊界矩形及相關資訊--------------------------------14 2.4 車輛分類比對------------------------------------15 2.4.1 基於形狀資訊的車輛比對方法-------------------------16 2.4.2 基於形狀資訊的車輛分類方法-------------------------18 2.5 車輛計數方法-------------------------------------21 第三章 一個運用在市區交通監視上之即時車輛分類和計數演算法------24 3.1 系統架構簡介---------------------------------------24 3.2 背景建立及前景物件偵測------------------------------26 3.3 前景物件資訊整理------------------------------------29 3.3.1 陰影移除----------------------------------------30 3.3.2 利用相鄰像素建立區塊相關形狀資訊-------------------31 3.3.3 雜訊移除及偵測區域修正---------------------------34 3.4 利用區塊資訊之車輛分類與比對演算法--------------------36 3.4.1 車輛計數演算法----------------------------------36 3.4.2 車輛分類演算法----------------------------------42 3.4.3 黏合與出入場景車輛之修正--------------------------47 3.5 車輛計數追蹤---------------------------------------49 3.6 異常行駛狀況偵測------------------------------------58 第四章 實驗結果與分析-------------------------------------63 4.1 實驗設備與場景-------------------------------------63 4.2 背景更新模式實驗結果--------------------------------63 4.3 車輛比對追蹤實驗結果--------------------------------64 4.4 車輛計數實驗結果及異常行駛偵測-----------------------66 第五章 結論與未來展望-------------------------------------69 相關文獻---------------------------------------------------71

    [1] Q.Zhou and J.K. Aggarwal, “Tracking and Classifying Moving Objects from Video,”Proceedings of IEEE Int.Workshop on PETS 2001,p44-p51

    [2] Manchun LEI, Damien LEFLOCH, Pierre GOUTON and Kadder
    MADANI, “A video-based real-time vehicle counting system using adaptive background method,” 2008 IEEE International Conference on Signal Image Technology and Internet Based Systems,P523-528

    [3] Liu Bo and Zhou Heqin, “Using object classification to improve urban traffic monitoring system,” IEEE Int. Conf. Neural Networks 8 Si nal Processing Nanjing, China, December 14-17. 2003

    [4] Thou-Ho Chen, Yu-Feng Lin, and Tsong-Yi Chen ,“Intelligent Vehicle Counting Method Based on Blob Analysis in Traffic Surveillanc,” IEEE2007 Innovative Computing,Information and Control,2007.ICICIC’07 Second International Conference p238-p241

    [5] Shunsuke Kamijo, Yasuyuki Matsushita, Katsushi Ikeuchi, “Traffic Monitoring and Accident Detection at Intersections, ” IEEE2000 Intelligent Transportation Systems,IEEE Transaction,P108-118

    [6] B.K.P. Horn and B.G. Schunck., “Determining optical flow, ” AI Memo 572. Massachusetts Institue of Technology, 1980,p78-84

    [7] Cathey,F.W.;Dailey,D.j, “A novel technique to dynamically measure vehicle speed using uncalibrated roadway cameras, ”IEEE2005 Intelligent Vehicles Symposium,2005.IEEE,p777-p782

    [8] D.Beymer and K.Konolige, “ A real-time computer vision system for measuring traffic parameters,”Proc.IEEE 1997, IEEE Computer Society Conference ,p495-p501

    [9]C.Stauffer, W.E.L.Grimson,“Adaptive Background Mixture Models for Real-time Tracking,”IEEE 1999, Computer Vision and Pattern Recognition,1999.IEEE Computer Society Conference,p83-p88

    [10] R.Mech and M.Wollborn, “A noise robust method for 2D shape estimation of moving objects in video sequences considering a moving camera, ”IEEE2003,Signal Processing, vol.66,p203-p217,Apr.1998

    [11] Kunfeng Wang, Zhenjiang Li, Qingming Yao, Wuling Huang, and Fei-Yue Wang, “An Automated Vehicle Counting System for Traffic Surveillance,” IEEE2007,Vehicular Electronics and Safety, 2007,ICVES.IEEE International Conference,p1-p6

    [12] 謬紹剛 譯, “數位影像處理-運用Matlab” 東華出版社, 2005

    [13] 林傳生, “Matlab之使用與應用” 儒林出版社, 2004

    下載圖示 校內:2014-09-08公開
    校外:2016-09-08公開
    QR CODE