簡易檢索 / 詳目顯示

研究生: 李政忠
Li, Cheng-Chung
論文名稱: 雲母細粒料含量對顆粒性土壤極限狀態參數之影響
Effects of Mica Fines Content on Critical State Parameters of Granular soils
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 77
中文關鍵詞: 三軸壓縮試驗雲母細粒料含量顆粒性土壤極限狀態參數
外文關鍵詞: triaxial compression test, mica fines content, granular soils, the critical state parameters
相關次數: 點閱:156下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於顆粒性土壤而言,雲母細粒料含量對於極限狀態參數的影響探討還不是很完整。因此,本研究利用渥太華砂與不同雲母細粒料含量,以濕搗法進行一連串的三軸壓縮試驗,並以試驗結果來探討雲母細粒料含量對於顆粒性土壤之極限狀態參數影響。實驗結果顯示,對於極限狀態參數Г、λ、M、κ、Ν而言,Г、κ、Ν在雲母含量低於25%時,其值會隨著雲母細粒料含量增加而降低,在雲母細粒料含量高於25%時,則會隨著雲母細粒料含量的增加而增加;λ則是會隨著雲母細粒料含量的增加而增加;而M則是會隨著雲母細粒料含量的增加而降低。

    For granular soils, the effects of mica fines content on critical state parameters is not very complete. This research uses the Ottawa sands with the different mica fines content by moisture tamping method to perform the triaxial compression test, and use the experimental result to study the effects of mica fines content on critical state parameters of granular soils.The experimental results showed that for the critical state parameters Γ、λ 、 M、κ and Ν when the mica fines content is lower than 25%, the value of Γ、κ and Ν will reduce with mica fines content; When mica fines content is higher than 25%, the value of Γ、κ and Ν will increase with mica fines content; The value of λ will increase with mica fines content, but the value of M will reduce with mica fines content.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XI 第一章、緒論 1 1.1 研究背景與動機 1 1.2 研究流程與方法 1 1.3 論文架構 4 第二章、文獻回顧 5 2.1 極限狀態的定義 5 2.2 穩定狀態與砂土受剪行為 7 2.3 極限狀態影響因子 10 2.3.1 剪動模式之影響 10 2.3.2 試體準備方法之影響 12 2.3.3 細粒料含量之影響 14 2.3.4 雲母細粒料含量之影響 15 第三章、試驗儀器設備 17 3.1 試驗儀器設備 17 3.1.1 三軸壓縮試驗系統 17 3.1.2 壓力供給系統 20 3.2 儀器率定 21 3.2.1 壓力計率定 21 3.2.2 荷重計率定 23 3.2.3 位移計率定 23 第四章、試驗內容 25 4.1 試驗土樣之基本物理性質 25 4.2 試驗步驟 27 4.2.1 試體準備 28 4.2.2 試體飽和 29 4.2.3 試體壓密 29 4.2.4 三軸壓縮試驗 30 4.3 試驗控制條件 31 4.4 試驗規畫 32 4.5 資料處理 33 第五章、試驗結果與分析 36 5.1 雲母細粒料含量對極限狀態參數M之影響 36 5.2 雲母細粒料含量對極限狀態參數Γ與λ之影響 42 5.3 雲母細粒料含量對極限狀態參數κ之影響 51 5.4 雲母細粒料含量對極限狀態參數N之影響 55 5.5 VCL與CSL之關係 56 第六章、結論與建議 61 6.1 結論 61 6.2 建議 62 參考文獻 63 附錄 66

    1.黃耀道,「台灣中西部粉土質砂土液化行為分析」,博士論文,國立交通大學土木工程學系 (2008)。
    2.李彥霆,「 單剪試驗下細粒料對砂土臨界狀態參數之影響」,碩士論文,國立暨南國際大學土木工程學系 (2009)。
    3. Alarcon-Guzman, A., Leonards, G. A. and Chameau, J. L., “Undrained Monotonic and Cyclic Strength of Sand.” Journal of Geotechnical Engineering, ASCE, Vol. 114, No. 2, pp. 1089–1109 (1988).
    4. Been, K., Jefferies, M. G., “A state parameter for sands.” Geotechnique, Vol. 35, No. 2, pp. 99–112 (1985).
    5. Been, K., Jefferies, M. G. and Hachey, J., “The critical state of sands.” Geotechnique, Vol. 41, No. 3, pp. 365–381 (1991).
    6. Bishop, A. W. and Henkel, D. J., “The measurement of soil properties in the triaxial test.” E. Arnold, London (1957).
    7. Bouckovalas, G. D., Andrianopoulos, K. I. and Papadimitriou, A. G., “A critical state interpretation for the cyclic liquefaction resistance of silty sands.” Soil Dynamics and Earthquake Engineering, Vol. 23, No. 2, pp. 115-125 (2003).
    8. Cabalar, A. F., “Applications of the oedometer,triaxial and resonant column tests to the of micaceou sands.” Engineering Geology, Vol. 112, pp. 21-28 (2010).
    9. Casagrande, A., “Characteristics of cohesionless soils affecting the stability of slopes and earth fills.” Contributions to soils mechanics, 1925-1940, Boston Society of Civil Engineers, Boston, Mass., pp. 257- 276 (1940).
    10. Castro, G., “Liquefaction of sand.” PhD thesis, Division of Engineering and Applied Physics, Harvard University (1969).
    11. Chang, W. J. and Hong, M. L., “Effects of Clay Content on Liquefaction Characteristics of Gap-Graded Clayey Sands.” Soils and Foundations, Vol. 48, No. 1, pp. 101-114 (2008).
    12. Harris, W. G., Parker, J. C. and Zelazny, L. W., “Effects of Mica Content on the Engineering Properties of Sand.” Soil Science Society American Journal, Vol. 48, pp. 501–505 (1984).
    13. Heyman, J., “Coulomb’s Memoir on Statics.” An Essay in the History of Civil Engineering, Imperial College Press, London, pp. 212 (1997).
    14. Ishihara, K., Tatsuoka, F. and Yasuda, S., “Undrained deformationand liquefaction of sand under cyclic stress.” Soils Found. Vol. 15, No. 1, pp. 29–44 (1975).
    15. Lee, J. S., Guimaraes, M. and Santamarina, C., “Micaceous Sands:Microscale Mechanisms and Macroscale Response.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 9, pp. 1136-1143 (2007).
    16. Li, X. S. and Wang, Y., “Linear representation of steady-stateline for sand.” J. Geotech. Geoenviron. Engng., ASCE, Vol. 124, No. 12, pp. 1215–1217 (1998).
    17. Li, X. S., Dafalias, Y. F. and Wang, Z. L., “State-dependent dilatancy in criticalstate constitutive modeling of sand.” Can Geotech. J., Vol. 36, No. 4, pp. 599–611 (1999).
    18. Loukidis, D. and Salgado, R., “Modeling sand response using two-surface plasticity.” Computers and Geotechnics, No. 36, pp. 166-186 (2009).
    19. Lupini, J. F., Skinner, A. E. and Vaughan, P. R., “The drained residual strength of cohesive soils.” Géotechnique, Vol. 31, No. 2, pp. 181–213 (1981).
    20. Murthy, T. G., “Study of the undrained static response of sandy soils in the critical state framework.” PhD Dissertation, Purdue University (2006).
    21. Murthy, T. G., Loukidis, D., Carraro, J. A. H., Prezzi, M. and Salgado, R., “Undrained monotonic response of clean and silty sands.” Geotechnique, Vol. 57, No. 3, pp. 273-288 (2007).
    22. Naeini, S. A. and Baziar, M. H., “Effect of fines content on steady-state strength of mixed and layered samples of a sand.” Soil Dynamics and Earthquake Engineering, Vol. 23, pp. 181-187 (2003).
    23. Poulos, S. J., “The Steady State of Deformation.” Journal of Geotechnical Engineering, Vol. 107, No. 5, pp. 553–562 (1981).
    24. Poulos, S. J., Castro, G. and France, J. W., “Closure to discussion:Liquefaction evaluation procedure.” J. Geotech. Engng. Am. Soc. Civ. Engrs., Vol. 114, No. 2, pp. 251-259 (1988).
    25. Reynolds, O., “On the Dilatancy of Media Composed of Rigid Particles in Contact With Experimental Illustrations.” Philosophical Magazine and Journal of Sciense, Series 5, Vol. 20, No. 127, pp. 469-481 (1885).
    26. Riemer, M. F. and Seed, R. B., “Factors affecting apparent position of steady-state line.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 3, pp. 281-288 (1997).
    27. Santamarina, J. C. and Cho, G. C., “Determination of Critical State Parameters in Sandy Soils—Simple Procedure.” Geotechnical Testing Journal, GTJODJ, Vol. 24, No. 2, pp. 185–192 (2001).
    28. Schofield, A. and Wroth, P., “Critical state soil mechanics.” McGraw-Hill, pp. 310 (1968).
    29. Schofield, A. N., “Don’t Use the C Word.” Ground Engineering, pp. 30–32 (1998).
    30. Seed, H. B. and Lee, K. L., “Undrained strength characteristics of cohesionless soils.” J. Soil Mech. and Found. Div., ASCE, Vol. 93, No. 6, pp. 333-360 (1967).
    31. Sladen, J. A., D’Hollander, R. D., Krahn, J. and Mitchell, D. E., “Back analysis of the Nerlerk berm liquefaction slides.” Can. Geotech. J., Vol. 22, No. 4, pp. 579-588 (1985).
    32. Thevanayagam, S., “Effect of fines and confining stress on undrained shear strength of silty sands.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 6, pp. 479-491 (1998).
    33. Verdugo, R. and Ishihara, K., “The steady state of sandy soils.” Soils Found., Vol. 36, No. 2, pp. 81–91 (1996).
    34. Yamamuro, J. A. and Lade, P. V., “Steady-state concepts and static liquefaction of silty sands.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 9, pp. 868-877 (1998).
    35. Yoshimine, M., “Soil mechanics laboratory.” Tokyo Metropolitan University. (2005).

    下載圖示 校內:2013-02-21公開
    校外:2013-02-21公開
    QR CODE