簡易檢索 / 詳目顯示

研究生: 王緯智
Wang, Wei-Zhi
論文名稱: 在慢性肉芽腫小鼠模式中缺乏氧活性分子改變感染減毒牛分枝桿菌(BCG)後肺部發炎反應
Lack of Reactive Oxygen Species Alters the Lung Inflammation to Mycobacterium bovis (BCG) Infection in a CGD Mouse Model
指導教授: 謝奇璋
Shieh, Chi-Chang
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 51
中文關鍵詞: 肺結核慢性肉芽腫疾病氧活性分子菸醯胺腺嘌呤二核磷酸氧化酶肺部發炎反應小鼠模式
外文關鍵詞: tuberculosis, chronic granuloma disease, reactive oxygen species, NADPH oxidase, lung inflammation, mouse model
相關次數: 點閱:106下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺結核是由結核分枝桿菌造成的疾病,每年有上百萬的人類死於肺結核。結核分枝桿菌屬於細胞內細菌,它會藉由抑制吞噬小體與溶酶體結合而躲避毒殺並存活在巨噬細胞內,因為免疫系統無法有效清除結核分枝桿菌因此形成肉芽腫(granuloma)將細菌包覆在其中。慢性肉芽腫病(chronic granuloma disease)是一種在菸醯胺腺嘌呤二核磷酸氧化酶(NADPH oxidase)產生缺失的遺傳性疾病,被診斷具有不正常發炎的症狀並且會在組織有肉芽腫形成。慢性肉芽腫病(chronic granuloma disease)實驗小鼠模式中已經被報導因為缺乏具有功能的菸醯胺腺嘌呤二核磷酸氧化酶而無法有效地產生氧活性分子(ROS)的慢性肉芽腫疾病小鼠(NADPH oxidase基因缺陷鼠)在感染後無法有效控制分枝桿菌的生長。在感染分枝桿菌的情況下,氧活性分子對調控肺部免疫反應的影響與機制尚未被清楚,因此我們利用慢性肉芽腫疾病小鼠模式去研究在感染減毒牛分枝桿菌-BCG情況下,氧活性分子對於肺部免疫反應的調控為何。我們將野生型的C57BL/6小鼠與NADPH oxidase基因缺陷鼠經由氣管感染3x105 c.f.u的BCG,藉此觀察肺部發炎反應的情況。實驗結果顯示,在感染後NADPH oxidase基因缺陷鼠的肺部與野生型小鼠相比有嚴重的發炎反應以及免疫細胞的浸潤,並且隨著觀察時間增加有更嚴重的現象。不論是野生型或是NADPH oxidase基因缺陷鼠在肺部都有肉芽腫形成,但是與野生行相比,在NADPH oxidase基因缺陷鼠感染14天之後就能觀察到有較多的肉芽腫形成,但在野生型則要在感染後28天才容易觀察到。在肺部灌流液中也發現與野生型相比,在NADPH oxidase基因缺陷鼠中明顯有較高的細胞數並且發現是以嗜中性球為主的細胞浸潤。我們也測定了在BCG感染後肺部均質液中細胞激素表現量。結果顯示在感染後7天,NADPH oxidase基因缺陷鼠肺部有大量促發炎激素(TNF-α, IL-1β)表現,同時觀察到抗發炎激素(IL-10)的表現量在NADPH oxidase基因缺陷鼠中與野生型相比明顯下降。IFN-γ的表現量是免疫系統對抗分枝桿菌感染的指標,但在NADPH oxidase基因缺陷鼠中卻是降低表現,另外IL-17A也是測出來是降低表現的情況。Th2 細胞激素 IL-4也有類似的情況。最後我們利用抗Gr-1的單株抗體將嗜中性球移除之後感染BCG發現,缺乏嗜中性球的NADPH oxidase基因缺陷鼠在感染後的3到4天內死亡,而野生型小鼠則是可以存活到觀察時間截止的7天。因此我們得到的結論是,在分枝桿菌BCG感染之下,缺乏白血球氧活性分子會導致肺部過度發炎反應並且無法有效控制細菌生長,而其他非嗜中性球的吞噬細胞所產生的氧活性分子在對抗分枝桿菌BCG的感染的保護性免疫反應中也佔有很重要的角色。

    Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (M.tb), kills millions of people every year world wide. M.tb is an intracellular pathogen which can survive in macrophages by inhibiting the fusion of phagosome and lysosome and leads to granuloma formation in the tissue. It has been reported that CGD mice, which have mutation on p47phox (Ncf1-/-) and lack a functional leukocyte NADPH oxidase to generate the reactive oxygen species (ROS), cannot control the growth of mycobacterium well in experimental infection models. Chronic granulomatous disease (CGD) is an inherited disorder of children with mutation on the NADPH oxidase complex, which is also characterized by abnormal inflammation responses leading to granuloma formation. The effect of ROS on lung immune response to mycobacterium has still not been well known. Therefore, we investigated the role of ROS in lung immune response by using BCG infection model in CGD mice. The wild type (wt) C57BL/6 mice and NADPH oxidase deficiency (Ncf1-/-) mice were infected with 3x105 c.f.u BCG intratracheally. After infection, the immune cell infiltration in lung sections from CGD mice was notably more severe than that in wt mice and the difference increased with time up to 28 days after infection. Both groups of mice developed granulomas in the lung and the severity was higher in CGD mice. CGD mice less able to control bacterial growth well. Also, the bronchoaveolar fluid (BALF) from CGD mice had higher total cell count and more neutrophils than in wt mice. We also examined the cytokine production in lung homogenae after BCG infection. The results showed that the proinflammatory cytokines (TNF-α, IL-1β) were increased but that the IFN-γ, IL-4, and IL-17A were decreased in CGD mice. The antiinflammatory cytokines (IL-10) were also decreased in CGD mice. We used anti Gr-1 antibody to deplete neutrophils in mice groups to investigate the role of non-neutrophil pathology in defense against mycobacterium. We found that CGD mice became very susceptible to BCG infection but wt mice were not. In conclusion, our results showed that leukocyte ROS deficiency causes abnormal lung inflammation in lung bacterial infection.

    Abstract in Chinese I Abstract in English III 致謝 V Contents VI 1. Introduction 1 1.1 Reactive Oxygen Species (ROS) 2 1.2 Chronic Granulomatous Disease (CGD) 4 1.3 Tuberculosis and Bacille Calmette-Guérin (BCG) 6 1.4 Immune response against M.tb 8 1.5 The role of neutrophils in defense against mycobacteria 10 1.6 Hypothesis 11 2. Materials and Methods 12 2.1 Mice 12 2.2 Mycobacterium bovis bacillus Calmette-Guérin (BCG) 12 2.3 Intratracheal infection of mice 13 2.4 Analysis of lung tissue histology 13 2.5 Analysis of bronchoalveolar lavage fluid (BALF) 13 2.6 Flow cytometry for CD45.2+CD11b+Gr-1high cells in BALF 14 2.7 Lung homogenate for ELISA 14 2.8 Depletion of Gr-1+ cells 15 2.9 Fluorescent acid fast stain and determination of bacterial load 15 2.10 Statistical analyses 16 3. Result 17 3.1 Lack of ROS leads to a severe inflammation and leukocytic infiltration in the lungs after BCG infection 17 3.2 Lack of ROS enhances granuloma formation in the lung after BCG infection 19 3.3 Neutrophils dominate in the hyperinflammation and severe infiltration after BCG infection in the lungs of Ncf1-/- mice. 20 3.4 Hyperinflammation and defective adaptive cytokines production in Ncf1-/- mice. 21 3.5 BCG infection was lethal in the neutrophil-depleted Ncf1-/- mice. 23 4. Discussion 24 4.1 Early cytokine response promotes granuloma formation in mycobacterial infection. 24 4.2 Decreased production of IFN-γ results in robust neutrophil recruitment and granuloma formation. 24 4.3 How Neutrophils accumulation in the lung is regulated by oxidant stress. 25 4.4 The role of granuloma in bacteria killing 26 4.5 ROS affect the activation of adaptive immunity 26 4.6 Neutrophil regulates immune system from early response 27 4.7 CGD Neutrophils are still indispensible for defense against mycobacteria in Ncf1-/- mice 27 4.8 The regulation of IL-17 28 4.9 Mycobacterial models of our laboratory 28 4.10 The cause of death in neutrophil-depleted Ncf1-/- mice 29 4.11 Conclusion 30 References 31 Figures 38

    Abadie, V., Badell, E., Douillard, P., Ensergueix, D., Leenen, P.J.M., Tanguy, M., Fiette, L., Saeland, S., Gicquel, B., and Winter, N. (2005). Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood 106, 1843-1850.
    Adams, L.B., Scollard, D.M., Ray, N.A., Cooper, A.M., Frank, A.A., Orme, I.M., and Krahenbuhl, J.L. (2002). The Study of Mycobacterium leprae Infection in Interferon-γ Gene-Disrupted Mice as a Model to Explore the Immunopathologic Spectrum of Leprosy. J Infect Dis 185, 1-8.
    Andersen, P., and Doherty, T.M. (2005). The success and failure of BCG - implications for a novel tuberculosis vaccine. Nat Rev Microbiol 3, 656-662.
    Appelberg, R. (2007a). Neutrophils and intracellular pathogens: beyond phagocytosis and killing. Trends Microbiol 2, 87-92.
    Appelberg, R. (2007b). Neutrophils and intracellular pathogens: beyond phagocytosis and killing. Trends in Microbiology 15, 87-92.
    Babior, B.M., Kipnes, R.S., and Curnutte, J.T. (1973). Biological Defense Mechanisms. The Production by Leukocytes of superoxide, A Potential Bacterial Agent. J Clin Invest 52, 741-744.
    Babior, B.M., Lambeth, J.D., and Nauseef, W. (2002). The Neutrophil NADPH Oxidase. Arch Biochem Biophys 397, 342-344.
    Bafica, A., Scanga, C.A., Feng, C.G., Leifer, C., Cheever, A., and Sher, A. (2005). TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med 202, 1715-1724.
    Bedard, K., and Krause, K.-H. (2007). The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol Rev 87, 245-313.
    BM, B., JD, L., and W, N. (2002). The neutrophil NADPH oxidase. Arch Biochem Biophys 397, 342-344.
    Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., Weinrauch, Y., and Zychlinsky, A. (2004). Neutrophil extracellular traps kill bacteria. Science 303, 1532-1535.
    Brown, J.R., Goldblatt, D., Buddle, J., Morton, L., and Thrasher, A.J. (2003). Diminished production of anti-inflammatory mediators during neutrophil apoptosis and macrophage phagocytosis in chronic granulomatous disease (CGD). J Leukoc Biol 73, 591-599.
    Casanova, J.-L., and Abel, L. (2002). Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20, 581-620.
    Clark, S.R., Ma, A.C., Tavener, S.A., McDonald, B., Goodarzi, Z., Kelly, M.M., Patel, K.D., Chakrabarti, S., McAvoy, E., Sinclair, G.D., et al. (2007). Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13, 463-469.
    Cohn, Z.A. (1963). The fate of bacteria within phagocytic cells. I. The degradation of isotopically labeled bacteria by polymorphonuclear leucocytes and macrophages. J Exp Med 117, 27-42.
    Cooper, A.M., Adams, L.B., Daltona, D.K., Appelbergc, R., and Ehlersd, S. (2002). IFN-g and NO in mycobacterial disease: new jobs for old hands. Trends Microbiol 10, 221-226.
    Cooper, A.M., Dalton, D.K., Stewart, T.A., Griffin, J.P., Russell, D.G., and Orme, I.M. (1993). Disseminated tuberculosis in interferon gamma gene-disrupted mice,. J Exp Med 178, 2243-2247.
    Cooper, A.M., and Khader, S.A. (2008). The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis,. Immunol Rev 226, 191-204.
    Cooper, A.M., Magram, J., Ferrante, J., and Orme, I.M. (1997). Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tuberculosis. J Exp Med 186, 39-45.
    Denis, M. (1991). Killing of Mycobacterium tuberculosis within human monocytes: activation by cytokines and calcitriol. Clin Exp Immunol 84, 200-206.
    Desvignes, L., and Ernst, J.D. (2009). Interferon-γ-Responsive Nonhematopoietic Cells Regulate the Immune Response to Mycobacterium tuberculosis. Immunity 31, 974-985.
    Dorhoi, A., Reece, S.T., and Kaufmann, S.H.E. (2011). For better or for worse: the immune response against Mycobacterium tuberculosis balances pathology and protection. Immunol Rev 240, 235-251.
    Flamand, N., Boudreault, S., Picard, S., Austin, M., Surette, M.E., Plante, H., Krump, E., Vallée, M.-J., Gilbert, C., Naccache, P., et al. (2000). Adenosine, a potent natural suppressor of arachidonic acid release and leukotriene biosynthesis in human neutrophils. Am J Respir Crit Care Med 161, 88-94.
    Flynna, J.L., and Chan, J. (2005). What's good for the host is good for the bug. Trends Microbiol 13, 98-102.
    Fuchs, T.A., Abed, U., Goosmann, C., 3, R.H., SchulzeV, Wahn, o., Weinrauch, Y., Brinkmann, V., and Zychlinsky, A. (2007). Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176, 231-241.
    Geiszt, M., Witta, J., Baffi, J., Lekstrom, K., and Leto, T.L. (2003). Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J 17, 1502-1504.
    H, A., and D., S. (2001). Safety in the Laboratory. Methods Mol Med 54, 367-383.
    Ha, E.-M., O, C.-T., Bae, Y.S., and Lee, W.-J. (2005). A Direct Role for Dual Oxidase in Drosophila Gut Immunity. Science 310, 847-850.
    Hampton, M.B., Kettle, A.J., and Winterbourn, C.C. (1998). Inside the Neutrophil Phagosome: Oxidants, Myeloperoxidase, and Bacterial Killing. Blood 92, 3007-3017.
    Han, C.-H., Freeman, J.L.R., Lee, T., Motalebi, S.A., and Lambeth, J.D. (1998). Regulation of the Neutrophil Respiratory Burst Oxidase Idetification of An Activation Domain in p67phox. J Biol Chem 273, 16663-16668.
    Happel, K.I., Lockhart, E.A., Mason, C.M., Porretta, E., Keoshkerian, E., Odden, A.R., Nelson, S., and Ramsay, A.J. (2005). Pulmonary Interleukin-23 Gene Delivery Increases Local T-Cell Immunity and Controls Growth of Mycobacterium tuberculosis in the Lungs. Infect Immun 73, 5782-5788.
    JD., L. (2007). Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 43, 332-347.
    Jr., D.A. (1991). Delayed-type hypersensitivity and cell-mediated immunity in the pathogenesis of tuberculosis. Immunol Today 12, 228-233.
    Kasahara, K., Sato, I., and Ogura, K. (1998). Expression of chemokines and induction of rapid cell death in human blood neutrophils by Mycobacterium tuberculosis. J Infect Dis 1998 Jul;178(1):127-37 178, 127-137.
    Kaufmann, S.H.E. (1995). Immunity to intracellular microbial pathogens. Immunol Today 16, 338-342.
    Keane, J., Gershon, S., Wise, R.P., Mirabile-Levens, E., Kasznica, J., Schwieterman, W.D., Siegel, J.N., and M Miles Braun (2001). Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345, 1098-1104.
    Khader, S.A., Bell, G.K., Pearl, J.E., Fountain, J.J., Rangel-Moreno, J., Cilley, G.E., Shen, F., Eaton, S.M., Gaffen, S.L., Swain, S.L., et al. (2007). IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 8, 369-377.
    Khadera, S.A., and Cooper, A.M. (2008). IL-23 and IL-17 in tuberculosis. Cytokine 41, 79-83.
    Klingler, K., Tchou-Wong, K.M., Brändli, O., Aston, C., Kim, R., Chi, C., and Rom, W.N. (1997). Effects of mycobacteria on regulation of apoptosis in mononuclear phagocytes. Infect Immun 65, 5272-5278.
    Knaus, U., Heyworth, P., Evans, T., Curnutte, J., and Bokoch, G. (1991). Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 254, 1512-1515.
    Krutzik, S.R., and Modlin, R.L. (2004). The role of Toll-like receptors in combating mycobacteria. Semin Immunol 16, 35-41.
    Lekstrom-Himes, J.A., Kuhns, D.B., Alvord, W.G., and Gallin, J.I. (2005). Inhibition of human neutrophil IL-8 production by hydrogen peroxide and dysregulation in chronic granulomatous disease. J Immunol 174, 411-417.
    Ley, K., Smith, E., and Stark, M.A. (2006). IL-17A-producing neutrophil-regulatory Tn lymphocytes. Immunol Res 34, 229-242.
    MacMicking, J.D., Taylor, G.A., and McKinney, J.D. (2003). Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302, 654-659.
    Maemura, K., Zheng, Q., Wada, T., Ozaki, M., Takao, S., Aikou, T., Bulkley, G.B., Klein, A.S., and Sun, Z. (2005). Reactive oxygen species are essential mediators in antigen presentation by Kupffer cells. Immunol Cell Biol 83, 336-343.
    Mangan, P.R., Harrington, L.E., O'Quinn, D.B., Helms, W.S., Bullard, D.C., Elson, C.O., Hatton, R.D., Wahl, S.M., Schoeb, T.R., and Weaver, C.T. (2006). Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231-234.
    Mantegazza, A.R., Savina, A., Vermeulen, M., Pérez, L., Geffner, J., Hermine, O., Rosenzweig, S.D., Faure, F., and Amigorena, S. (2008). NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. Blood 112, 4712-4722.
    Martineau, A.R., Newton, S.M., Wilkinson, K.A., Kampmann, B., Hall, B.M., Nawroly, N., Packe, G.E., Davidson, R.N., Griffiths, C.J., and Wilkinson, R.J. (2007). Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest 117, 1988-1994.
    Mayer-Scholl, A., Averhoff, P., and Zychlinsky, A. (2004). How do neutrophils and pathogens interact? Curr Opin Microbiol 7, 62-66.
    Miyamoto, M., Prause, O., Sjöstrand, M., Laan, M., Lötvall, J., and Lindén, A. (2003). Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways. J Immunol 170, 4665-4672.
    Mohan, V.P., Scanga, C.A., Yu, K., Scott, H.M., Tanaka, K.E., Tsang, E., Tsai, M.C., Flynn, J.L., and Chan, J. (2001). Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infect Immun 69, 1847-1855.
    Moraes, T.J., Zurawska, J.H., and Downey, G.P. (2006). Neutrophil granule contents in the pathogenesis of lung injury. Curr Opin Hematol 13, 21-27.
    Morel, C., Badell, E., Abadie, V., Robledo, M., Setterblad, N., Gluckman, J.C., Gicquel, B., Boudaly, S., and Winter, N. (2008). Mycobacterium bovis BCG-infected neutrophils and dendritic cells cooperate to induce specific T cell responses in humans and mice. Eur J Immunol 38, 437-447.
    Oca, R.M.d., Buendía, A.J., Río, L.D., Sánchez, J., Salinas, J., and Navarro, J.A. (2000). Polymorphonuclear neutrophils are necessary for the recruitment of CD8+ T cells in the liver in a pregnant mouse model of Chlamydophila abortus (Chlamydia psittaci serotype 1) infection. Infect Immun 68, 1746-1751.
    Organization, W.H. (2010). Treatment of tuberculosis: guidelines – 4th ed.
    PL, L., HL, P., NN, V., and JL., F. (2007). Tumor necrosis factor and tuberculosis. J Investig Dermatol Symp Proc 12, 22-25.
    Raja, A. (2004). Immunology of tuberculosis. Indian J Med Res 120, 213-232.
    Reeves, E.P., Lu, H., Jacobs, H.L., Messina, C.G.M., Bolsover, S., Gabella, G., Potma, E.O., Warley, A., Roes, J., and Segal, A.W. (2002). Killing activity of neutrophils is mediatedthrough activation of proteases by K+ flux. Nature 446, 291-297.
    Rockett, K.A., Brookes, R., Udalova, I., Vidal, V., Hill, A.V.S., and Kwiatkowski, D. (1998). 1,25-Dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect Immun 66, 5314-5321.
    Romani, L., Fallarino, F., Luca, A.D., Montagnoli, C., D’Angelo, C., Zelante, T., Vacca1, C., Bistoni, F., Fioretti, M.C., Grohmann, U., et al. (2007). Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451, 211-215.
    Roos, D., and Winterbourn, C.C. (2002). Lethal Weapons. Science 26, 669-671.
    Rosenzweig, S.D. (2008). Inflammatory manifestations in chronic granulomatous disease (CGD). J Clin Immunol 1, 67-72.
    Russell, D.G., Barry, C.E., and Flynn, J.L. (2010). Tuberculosis: What We Don' t Know Can, and Does, Hurt Us. Science 328, 852-856.
    Salgame, P. (2005). Host innate and Th1 responses and the bacterial factors that control Mycobacterium tuberculosis infection. Curr Opin Immunol 17, 374-380.
    Saunders, B.M., Frank, A.A., Orme, I.M., and Cooper, A.M. (2002). CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis. Cell Immunol 216, 65-72.
    Schlesinger, L.S., Hull, S.R., and Kaufman, T.M. (1994). Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J Immunol 152, 4070-4079.
    Segal, A.W. (1996). The NADPH oxidase and chronic granulomatous disease. Mol Med Today 2, 129-135.
    Segal, A.W. (2005). How Neutrophils Kill Microbes. Annu Rev Immunol 23, 197-223.
    Segal, B.H., Romani, L., and Puccetti, P. (2009). Chronic granulomatous disease. Cell Mol Life Sci 66, 553-555.
    Seiler, P., Aichele, P., Bandermann, S., Hauser, A.E., Lu, B., Gerard, N.P., Gerard, C., Ehlers, S., Mollenkopf, H.J., and Kaufmann, S.H.E. (2003a). Early granuloma formation after aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-signaling chemokines. Eur J Immunol 33, 2676-2686.
    Seiler, P., Aichele, P., Bandermann, S., Hauser, A.E., Lu, B., Gerard, N.P., Gerard, C., Ehlers, S., Mollenkopf, H.J., and Kaufmann, S.H.E. (2003b). Early granuloma formation after aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-signaling chemokines. Eur J Immunol 33, 2676-2686.
    Sergejeva, S., Ivanov, S., Lötvall, J., and Lindén, A. (2005). Interleukin-17 as a Recruitment and Survival Factor for Airway Macrophages in Allergic Airway Inflammation. Am J Resp Cell Mol Biol 33, 248-253.
    Sheppard, F.R., Kelher, M.R., Moore, E.E., McLaughlin, N.J.D., Banerjee, A., and Silliman, C.C. (2005). Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukocyte Biol 78, 1025-1042.
    Shiloh, M.U., and Champion, P.A.D. (2010). To catch a killer. What can mycobacterial models teach us about Mycobacterium tuberculosis pathogenesis. Curr Opin Microbiol 13, 86-92.
    Silva, M.T., Silva, M.N., and Appelberg, R. (1989). Neutrophil-macrophage cooperation in the host defence against mycobacterial infections. Microb Pathog 6, 369-380.
    Stenger, S., Hanson, D.A., Teitelbaum, R., Dewan, P., Niazi, K.R., Froelich, C.J., Ganz, T., Thoma-Uszynski, S., Melián, A.n., Bogdan, C., et al. (1998). An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121-125.
    Suttmann, H., Lehan, N., Böhle, A., and Brandau, S. (2003). Stimulation of neutrophil granulocytes with Mycobacterium bovis bacillus Calmette-Guérin induces changes in phenotype and gene expression and inhibits spontaneous apoptosis. Infect Immun 71, 4647-4656.
    Tan, B.H., Meinken, C., Bastian, M., Bruns, H., Legaspi, A., Ochoa, M.T., Krutzik, S.R., Bloom, B.R., Ganz, T., Modlin, R.L., et al. (2006). Macrophages acquire neutrophil granules for antimicrobial activity against intracellular pathogens. J Immunol 177, 1864-1871.
    Tezel, G., Yang, X., Luo, C., Peng, Y., Sun, S.L., and Sun, D. (2007). Mechanisms of immune system activation in glaucoma: oxidative stress-stimulated antigen presentation by the retina and optic nerve head glia. Invest Ophthalmol Vis Sci 48, 705-714.
    Thomas, E.L., Milligan, T.W., Joyner, R.E., and Jefferson, M.M. (1994). Antibacterial activity of hydrogen peroxide and the lactoperoxidase-hydrogen peroxide-thiocyanate system against oral streptococci. Infect Immun 62, 529-535.
    Tobin, D.M., and Ramakrishnan, L. (2008). Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol 10, 1027-1039.
    Torradoa, E., Robinsona, R.T., and Coopera, A.M. (2011). Cellular response to mycobacteria: balancing protection and pathology. Trends Immunol 32, 66-72.
    Torres, M.A., and Dangl, J.L. (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8, 397-403.
    Towbin, A.J., and Chaves, I. (2010). Chronic granulomatous disease. Pediatr Radiol 40, 657-668.
    Umemura, M., Yahagi, A., Hamada, S., Begum, M.D., Watanabe, H., Kawakami, K., Suda||, T., Sudo, K., Nakae, S., Iwakura, Y., et al. (2007). IL-17-Mediated Regulation of Innate and Acquired Immune Response against Pulmonary Mycobacterium bovis Bacille Calmette-Guérin Infection. J Immunol 178, 3786-3796.
    Vignais, P.V. (2002). The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59, 1428-1459.
    Volkman, H.E., Pozos, T.C., Zheng, J., Davis, J.M., Rawls, J.F., and Ramakrishnan, L. (2010). Tuberculous Granuloma Induction via Interaction of a Bacterial Secreted Protein with Host Epithelium. Science 327, 466-469.
    Weiss, S.J. (1989). Tissue Destruction by Neutrophils. N Engl J Med 320, 365-376.
    Winkelstein, Marino, J.A., C, M., Johnston, Jr, R.B., Boyle, J., Curnutte, J., Gallin, J.I., Malech, H.L., Holland, S.M., et al. (2000). Chronic Granulomatous Disease: Report on a National Registry of 368 Patients.
    Medicine 79, 155-169.
    WM., N. (2004). Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol 122, 277-291.
    Wong, R.K.M., Pettit, A.I., Quinn, P.A., Jennings, S.C., Davies, J.E., and Ng, L.L. (2003). Advanced Glycation End Products Stimulate an Enhanced Neutrophil Respiratory Burst Mediated Through the Activation of Cytosolic Phospholipase A2 and Generation of Arachidonic Acid. Circulation 108, 1858-1864.
    Yoshida, Y.O., Umemura, M., Yahagi, A., O’Brien, R.L., Ikuta, K., Kishihara, K., Hara, H., Nakae, S., Iwakura, Y., and Matsuzaki, G. (2010). Essential Role of IL-17A in the Formation of a Mycobacterial Infection-Induced Granuloma in the Lung. J Immunol 184, 4414-4422.

    下載圖示 校內:2016-08-25公開
    校外:2016-08-25公開
    QR CODE