| 研究生: |
徐新迪 Hsu, Hsin-Ti |
|---|---|
| 論文名稱: |
應用田口法於衝擊冷卻下柱狀鰭片散熱器之最佳化數值研究 Numerical Study of Optimum Pin-Fin Heat Sink with Air Impinging Cooling by Using Taguchi Method |
| 指導教授: |
楊玉姿
Yang, Yue-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 田口法 、衝擊冷卻 、最佳化 、鰭片散熱器 、紊流 |
| 外文關鍵詞: | pin-fin heat sink, Taguchi method, impinging cooling, optimum, turbulence |
| 相關次數: | 點閱:74 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本文使用田口法探討空氣衝擊冷卻下鰭片散熱器最佳化的數值模擬。在四個設計參數且每個參數具有三種水準之下,本文選用 的直交表來執行測試。數值計算的方法上,是以控制體積法為基礎,並配合有限差分及冪次法則在正交、非等間距的交錯式格點上將各統御方程式離散成差分方程式,並且以SIMPLEC法來求解動量方程式中壓力項與速度項的耦合問題。對於紊流的運動以及結構則是以 雙方程紊流模式來描述。
文中討論的參數有:雷諾數(Re=10000~25000),鰭片間距a (2mm~ 6.4mm),鰭片間距b (2mm~6.4mm),鰭片間距c (2mm~6.4mm)。本文中主要探討的是鰭片間的距離和鰭片高度對散熱器熱阻的影響,並且應用田口法來找尋最佳的設計參數組合。其結果顯示從散熱器中心往外到邊緣的鰭片間距應由小逐漸變大,而鰭片高度則是越高越好。因此,最佳組為 。此外,設計參數對熱阻的影響由大到小為:間距a,鰭片高度H,間距c與間距b。
關鍵字:衝擊冷卻、最佳化、鰭片散熱器、田口法、紊流
Abstract
This study presents the numerical simulation of optimum pin-fin heat sink with air impinging cooling by using Taguchi method. orthogonal array is selected as a plan for the four design-parameters with three levels.The governing equations are discretized by using control-volume-based-finite -difference method with power-law scheme on an orthogonal non-uniform staggered grid. The coupling of the velocity and the pressure terms of momentum equations are solved by SIMPLEC algorithm. The two-equations turbulence model is employed to describe the turbulent structure and behavior.
The parameters studied include Reynolds number (Re =10000~25000), inter-fin spacing a(2mm~6.4mm), inter-fin spacing b(2mm~6.4mm),inter-fin spacing c(2mm~6.4mm).The objective of this study is to examine the effects of the fin spacings and fin height on the thermal resistance and then find the optimum group by using Taguchi method. It’s found that the fin spacings from center to edge of the heat sink should be gradually extended, and the fin’s height is the longer the better. Then, the optimum group is . In addition, the ranks of the design parameters on thermal resistance from maximum to minimum are spacing a, fin height, spacing c, spacing b.
Keywords:impinging cooling, optimum, pin-fin heat sink, Taguchi method, turbulence
參考文獻
Brignoni L.A., Garimella S.V., Experimental optimization of confined air jet impingement on a pin fin heat sink, IEEE Trans. Compon. Packag. Technol. 22 (3) (1999) 399–404.
Chung Y.M., Luo K.H., Unsteady heat transfer analysis of an impinging jet, J. Heat Transfer 124 (2002) 1039–1048. Y.-T. Yang, H.-S. Peng, International Journal of Heat and Mass Transfer 51 (2008) 4788–4796
Duan Z., Muzychka Y.S., Experimental investigation of heat transfer in impingement air cooled plate fin heat sinks, J. Electron. Packag. 128 (2006) 412–418.
Doormaal J.P. van, Raithby F.D., Enhancements of the SIMPLE method for predicting incompressible fluid flows, Numer. Heat Transfer 7 (1984) 147–163.
El-Sheikh H.A.,Garimella S.V., Enhancement of air jet impinging heat transfer using pin-fin heat sinks, IEEE Trans. Compon. Packag. Technol. 23 (2) (2000) 300–308.
Kobus C.J., Oshio T., Development of a theoretical model for predicting the thermal performance characteristics of a vertical pin-fin array heat sink under combined forced and natural convection, Int. J. Heat Mass Transfer 48 (2005) 1053–1063.
Kobus C.J., Oshio T., Predicting the thermal performance characteristics of staggered vertical pin fin array heat sinks under combined mode radiation and mixed convection with impinging flow, Int. J. Heat Mass Transfer 48 (2005) 2684–2696.
Kim K.S., Won M.H., Kim J.W., Back B.J., Heat pipe cooling technology for desktop PC CPU, Appl. Thermal Eng. 23 (2003) 1137–1144.
Khan W.A., Culham J.R., Yovanovich M.M., Optimization of pin-fin heat sinks using entropy generation minimization, ITHERM 1(August) (2004) 259–267.
Lorenzini G., Moretti S., Numerical analysis on heat removal from Y-shaped fins: efficiency and volume occupied for a new approach to performance optimisation, Int. J. Thermal Sci. 46 (2007) 573–579.
Ledezma G., Bejan A., Heat sinks with sloped plate fins in natural and forced convection, Int. J. Heat Mass Transfer 39 (9) (1996) 1773–1783.
Li H.Y., Chen K.Y., Thermal performance of plate-fin heat sinks under confined impinging jet conditions, Int. J. Heat Mass Transfer 50 (2007) 1963–1970.
Li H.Y., Chen K.Y., Thermal-fluid characteristics of pin-fin heat sinks cooled by impinging jet, J. Enhan. Heat Transfer 12 (2) (2005)189–201.
Maveety J.G., Hendricks J.F., A heat sink performance study considering material, geometry, reynolds number with air impingement, J. Electron. Packag. 121 (1999) 156–161.
Maveety J.G., Jung H.H., Design of an optimal pin-fin heat sink with air impingement cooling, Int. Commun. Heat Mass Transfer 27 (2) (2000) 229–240.
Maveety, J. G. and Jung, H. H. (2002) Heat Transfer From Square Pin-Fın Heat Sinks Using Air Impingement Cooling, IEEE Trans. Components and Packaging Technologies, Vol. 25, pp. 459-469.
Nishino K., Samada M., Kasuya K., Torii K., Turbulence statistics in the stagnation region of an axisymmetric impinging jet flow, Int. J. Heat Fluid Flow 17 (1996) 193–201.
Ogiso K., Assessment of overall cooling performance in thermal design of electronics based on thermodynamics, J. Heat Transfer 123(2001) 999–1005.
Patankar S.V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
Shah A., Sammakia B.G., Srihari K., Ramakrishna K., Optimization study for a parallel plate impingement heat sink, J. Electron. Packag.128 (2006) 311–318.
Shah A., Sammakia B.G., Srihari H., Ramakrishna K., A numerical study of the thermal performance of an impingement heat sink-fin shape optimization, IEEE Trans. Compon. Packag. Technol. 27 (4)(2004) 710–717.
Sansoucy E., Oosthuizen P.H., Ahmed G.R., An experimental study of the enhancement of air-cooling limits for telecom/datacom heat sink applications using an impinging air jet, J. Electron. Packag. 128(2006) 166–171.
Sathe S.B., Sammakia B.G., An analytical study of the optimized performance of an impingement heat sink, J. Electron. Packag. 126 (2004) 528–534.
Shuja S.Z., Zubair S.M., Khan M.S., Thermoeconomic design and analysis of constant cross-sectional area fins, Heat Mass Transfer 34(1999) 357–364.
李輝煌,「田口方法 品質設計的原理與實務」,高立圖書有限公司,民89
鄭燕琴,「田口品質工程技術理論與實務」,中華民國品質管制學會,民82
小西省三,「品質平價的SN比」,中國生產力中心,民80
鐘清章,「品質工程(田口方法)」,中華民國品質管制學會,民83