簡易檢索 / 詳目顯示

研究生: 陳厚璁
Chen, Hou-Tsung
論文名稱: 自行車四連桿車體之結構設計與應力分析
The Mechanism Design and Stress Analysis of the Four-bar linkage Structure of a Bicycle
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 68
中文關鍵詞: 四連桿自行車疲勞測試分析理論
外文關鍵詞: four-bar linkage, bicycle, fatigue test, simulation method
相關次數: 點閱:140下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以自行車四連桿車體為研究主題,首先利用電腦輔助設計繪圖軟體 SolidWorks 設計四連桿自行車體,並且針對上管、下管以及座管設計三種分別為1.5 mm、1.75 mm與2.0 mm管壁厚度,再使用 SolidWorks 之 Simulation 模組進行結構應力分析。分析時利用 von Mises 降伏準則來判斷此自行車體是否破壞,以及分析此次設計是否可以符合歐洲標準化(EN)法規車架相關的疲勞測試。模擬分析時將套用相關的材料性質,進行元素切割,設定相關的邊界條件與負載,先分析施加負載後對自行車產生的應力並找出網格的收斂性,找出適當的網格數量後,之後再模擬自行車實際進行水平力、垂直力與踏力疲勞試驗的狀況。最終疲勞分析的結果,可得知此次四連桿車體設計,水平力、垂直力與踏力應力因車體管壁厚度的增加而逐漸減少,也此可以通過疲勞試驗,並得到1.75 mm為較佳設計。利用本研究建立的分析方式可以讓自行車從設計研發前端就進行實驗測試,減少打樣次數與樣品實際疲勞試驗時間,間接提高生產產能與節省設計成本。

    This thesis presents a simulation test for the four-bar linkage of bicycle. First, we used SolidWorks to design the four-bar linkage, and set the thickness of the top tube, the down tube and the seat tube to be 1.5 mm, 1.75 mm, and 2.0 mm, respectively. Then, we conducted a simulation analysis of structure stress and used the von Mises yield criterion determine whether this design would be feasible meet the European Normalization (EN) regulations related to fatigue test. In the simulation analysis, we generated elements according to material properties and set the related loads and boundary conditions for analyzing the stress generated on the bicycle after loading and for grid convergence. After determining the grids, we simulated a fatigue test of the horizontal force, the vertical force and the pedaling force. Finally, we found out that as the thickness of the tubes increased, the horizontal force, the vertical force and the pedaling stress decreased, and that 1.75 mm is the optimal thickness for the four-bar linkage design. With the proposed simulation method, the proofing process can be simplified, and the time for fatigue test can be reduced, which means that productive capacity can be elevated and that costs can be saved.

    摘 要 I 誌 謝 V 目 錄 VI 圖 目 錄 X 表 目 錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3文獻回顧 3 1-3-1 有限元素分析 3 1-3-2 自行車結構測試 3 1-3-3 自行車應力分析與設計 4 1-4 論文架構 5 第二章 理論基礎 6 2-1 四連桿機構 6 2-2 降伏理論與疲勞破壞 8 2-2-1降伏理論 8 2-2-2疲勞破壞 9 2-3 歐洲標準化(EN) 10 2-4 有限元素分析法 15 2-5 SolidWorks 與 SolidWorks Simulation簡介 18 2-5-1 SolidWorks簡介 18 2-5-2 SolidWorks Simulation簡介 19 第三章 四連桿車體設計與應力分析 21 3-1 四連桿車體模型建立與結構設計 21 3-1-1 四連桿車體模型建立 21 3-1-2 四連桿車體模型結構設計 21 3-2 Simulation模擬分析邊界條件設定 23 3-2-1 材料選定與網格選用 23 3-2-2 模型網格分割 24 3-3 四連桿車體實測負載之設定 25 3-3-1 水平力負載之設定 25 3-3-2 垂直力負載之設定 27 3-3-3 踏力負載之設定 29 3-4 分析流程 31 第四章 四連桿車體應力分析設定與結果 32 4-1 收斂性分析 32 4-2 整體應力分析 40 4-2-1 水平拉應力 40 4-2-2 水平壓應力 43 4-2-3 垂直壓應力 46 4-2-4 右踏壓應力 49 4-2-5 左踏壓應力 52 4-3 疲勞測試分析 55 4-3-1 水平力疲勞測試分析 55 4-3-2 垂直力疲勞測試分析 58 4-2-3 踏力疲勞測試分析 60 第五章 結論與未來展望 63 5-1結論 63 5-2未來展望 64 參考文獻 66

    [1] 輪彥自行車電子報,國內業界動態,第 31 期,2008 年。
    [2] 台灣區自行車輸出業同業公會,自行車實用手冊(上冊),台灣區自行車輸出業同業公會,2001 年。
    [3] Bennett, J.A., and Botkin, M.E., Structural Optimization Appoach with Geometric Description and Adaptive Mesh Refinement, AIAA Journal, Vol. 23, pp. 458-464, 1985.
    [4] Rao, S. S., The Finite Element Method in Engineering, 3rd Edition, Boston: Butterworth Heinemann, 1999.
    [5] Knight, C. E., The Finite Element Method in Mechanical Design, Boston: PWS-Kent, 1993.
    [6] J.N. Reddy, Mechanics of Laminated Composite Plates: theory and analysis. New York: CRC Press, 1997.
    [7] Seibi, A. C., Amateau, M. F., Finite Element Modelling and Optimization For Controlling the Residual Thermal Stresses of Laminated Composite Tubes, Composite Structures, Vol. 41, pp. 151-157, 1998.
    [8] Richard﹐S. and Champoux﹐Y.﹐Evaluation of Road Bike Comfort Using Classical and Operational Modal Analyses , Proceedings of the IMAC-XXII, Orlando, Florida , pp. 205-213, 2005.
    [9] 王栢村、陳昱成,車架與前叉組何件之模型驗證與衝擊試驗響應預測,機械技師學刊,Vol. 4,No. 2,pp. 26-33,2011.
    [10] Stone, C., and Hull, M. L., The Effect of Rider Weight on Rider-Induced Loads During Common Cycling Situations, Journal of Biomechanics, Vol. 16, pp. 365-375, 1993.
    [11] 謝勝任,自行車鑽石型車體結構疲勞分析與最佳化設計之研究,大葉大學自動化工程學系碩士論文,2004。
    [12] 林俊印,自行車結構在動態與靜態負載下之力學探究,元智大學機械工程系碩士論文,2007。
    [13] Lessard, L.B., Nemes, J.A., Lizotte, P.L., Utilization of FEA in the design of composite bicycle frames, Composites, Vol. 26, pp. 72-74, 1995.
    [14] Peterson, L.A., Londry, K.J., Finite-Element Structural Analysis: A New Tool for Bicycle Frame Design, Bike Tech, Vol. 5, 1986, Retrieved Mar 15, 2009.
    [15] 宋宜駿,複材自行車架重新設計與力學分析,中山大學機械與機電工程系碩士論文,2005。
    [16] 張佳盟,碳纖維自行車前叉之疲勞壽命分析,逢甲大學機械工程碩士論文,2007。
    [17] 鄭連生,機構學,五南圖書出版有限公司,2001。
    [18] 徐業良,機械設計,滄海書局,2007。
    [19] 實威國際,SolidWorks Simulation原廠教育訓練手冊,易習圖書,2011。
    [20] 參考資料ftp://law.resource.org/de/ibr/din.en.14766.e.2006.pdf
    [21] 李輝煌,ANSYS 工程分析基礎與觀念,高立圖書有限公司,2005。
    [22] 劉晉奇、褚晴暉,有限元素分析與 ANSYS 的工程應用,滄海書局,2006。
    [23] 實威國際,SolidWorks 2014原廠教育訓練手冊,全華圖書,2014。

    無法下載圖示 校內:2020-02-09公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE