簡易檢索 / 詳目顯示

研究生: 陳學威
Chen, Hsueh-wei
論文名稱: 近場光學顯微鏡應用於奈米金屬結構之光學特性之量測與分析
Studies of optical properties of nanostructural metals using NSOM
指導教授: 張允崇
Chang, Yun-Chorng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 72
中文關鍵詞: 表面電漿奈米金屬結構近場光學顯微鏡
外文關鍵詞: metallic nanostructures, surface plasmon., near-field scanning optical microscopy (NSOM)
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用近場光學顯微鏡(near-field scanning optical microscopy ,NSOM)應用於奈米結構之量測與特性分析,由於其架構是以剪力式之原子力顯微鏡(Atomic Force Microscope, AFM)為基礎,並且具有點光源激發以及在近場的範圍中量測,故可獲得在次波長的區域內,奈米金屬結構的表面型態(topography)和其所對應的光學影像(optical image)。
    首先利用自主性結構(self-assembly monolayer ,SAM)的方法,以化學吸附及高溫退火的方式製備奈米金屬結構。在化學吸附方面,先在基板上形成3-aminopropyl-triethoxysilane(APTES)薄膜,利用正負電相吸的原理,將平均粒徑20nm之奈米金粒子吸附在基板上,奈米金粒子的吸附密度,在浸泡時間為一小時後到達飽和,這可以由穿透率和表面型態的量測得到驗證。在高溫退火方面,藉由控制金屬薄膜的厚度,可獲得不同粒徑大小之奈米金屬粒子。將10、5、3nm的金薄膜以9000C、銀薄膜以6000C,經過30min的熱退火,可成功製備平均粒徑為250、53、24nm之奈米金粒子,以及平均粒徑為138、41、23nm之奈米銀粒子。
    最後利用近場光學顯微鏡,進行探針照明(tip illumination)下之穿透模式(transmission mode)的量測,發現奈米金屬結構確實對光場有近場增強的作用,並且對奈米金屬粒子的表面電漿效應,以及光纖孔徑探針將近場訊號散射至遠場的現象做ㄧ驗證。

    In this dissertation, optical properties of metallic nanostructures are investigated using near-field scanning optical microscopy (NSOM). NSOM is consisted of a shear force atomic force microscope (AFM) with a metal-coated taper single mode fiber as the probe tip. Therefore, topography and optical images of the nanostructure with sub-wavelength resolution can be achieved at the same time.
    The metallic nanostructures investigated in this study are fabricated by methods of chemical absorption and high temperature annealing. In the method of chemical adsorbing, the substrate surface was first functionalized with a self-assembled monolayer (SAM) of 3-aminopropyl-triethoxysilane (APTES). Au nanoparticles were subsequently absorbed on the substrate surface due to electrostatic attraction between the nanoparticles and the SAM. The Au absorption density reaches a maximum value after one hour of immersion, which is verified by both absorption measurements and secondary electron microscopy (SEM). The second method is high temperature annealing of a thin metal film. Nanoparticles with different particle size can be obtained by controlling the thickness of metallic thin film. Au nanoparticles with average size of 250、53、24nm and Ag nanoparticles with average size of 138、41、23nm can be obtained by annealing Au and Ag films of thickness of 10、5、3nm are annealed at 9000C for 30min and at 6000C for 30min, respectively.
    Finally, transmission mode NSOM images of the metallic nanoparticles reveal that higher transmission occurs when illuminated with light that is on resonance with the localized surface plasmon mode of the metallic nanoparticles, which results in a brighter spot in the image. By contrary, off-resonance light results in a lower transmission intensity, which results in a dark spot in the NSOM image. Therefore, the results strongly support that localized surface plasmon from the metallic nanostructures enhance the conversion of near-field light into far-field light.

    中文摘要 Ι 英文摘要 ΙΙI 致謝 VI 目錄 VII 圖目錄 X 第一章 導論 1-1 前言 1 1-2 研究動機與法 2 1-3 表面電漿共振理論 1-3-1 介電物質與金屬界面的表面電漿共振 3 1-3-2 侷域性表面電漿共振 6 1-3-3 Mie Theory 8 1-4 近場光學簡介 1-4-1 遠場光學與繞射極限 9 1-4-2 近場光學發展史 11 1-4-3 光學繞射極限的突破 14 第二章 實驗設備與實驗方法 2-1 實驗設備 2-1-1 真空熱蒸鍍系統 18 2-1-2 高溫爐管 18 2-1-3 VIS-UV光譜儀 19 2-1-4 掃描式電子顯微鏡 20 2-1-5 原子力顯微鏡 21 2-1-6 近場光學顯微鏡 26 2-2 實驗流程 2-2-1試片製備 33 2-2-2量測步驟 36 第三章 表面型態量測之結果與討論 3-1化學吸附方法之表面型態 37 3-2高溫退火方法之表面型態 3-2-1 金薄膜之表面型態 42 3-2-2 銀薄膜之表面型態 46 3-3 結論 49 第四章 光學特性量測之結果與討論 4-1吸收光譜量測之結果與討論 4-1-1化學吸附方法之吸收光譜 50 4-1-2高溫退火方法之吸收光譜 54 4-2近場光學量測之結果與討論 4-2-1化學吸附所得奈米金屬結構之近場光學量測 58 4-2-2高溫退火所得奈米金屬結構之近場光學量測 61 4-3 結論 65 第五章 結論 5-1 總結 67 5-2 未來工作 68 REFERENCES 69

    [1] L. Salomon, C. Charbonnier, and F. de Fornel,“Near-field optical study of mesoscopic Au periodic samples: Effect of the polarization and comparison between different imaging modes”, Phys. Rev. B 62, 17072 (2000).

    [2] K. Imura, H. Okamoto,“Near-field imaging of optical field and plasmon wavefunctions in metal nanoparticles”, J. Mater. Chem. 16, 3920 (2006)

    [3] K. Imura, H. Okamoto, M. K. Hossain and M. Kitajima,“Near-field Imaging of Surface-enhanced Raman Active Sites in Aggregated Gold Nanoparticles”, Chem. Lett. 35, 78 (2006)..

    [4] T. Wadayama, M. Oishi,“Surface-enhanced Raman spectral study of Au nano-particles/alkanethiol self-assembled monolayers/Au(111) heterostructures”, SURF. SCI. 600 18, 4352 (2006)

    [5] D. Dulic,“One-way optoelectronic switching of photochromic molecules on gold”, Phys. Rev. Lett. 91, 207402 (2003).

    [6] S. Shinada, J. Hashizume, and F. Koyama,“Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating”, Appl. Phys. Lett. 83, 836 (2003).

    [7] J. Tominaga, C. Mihalcea, D. Büchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa,“Local plasmon photonic transistor”, Appl. Phys. Lett. 78, 2417 (2001).

    [8] D. P. Tsai, and W. C. Lin,“Probing the near fields of the
    super-resolution near-field optical structure”, Appl. Phys. Lett. 77, 1413 (2000).

    [9] S. Sun, G. J. Leggett,“Matching the resolution of electron beam lithography by scanning near-field photolithography”, Nano Lett. 4, 1381 (2004)

    [10] M. Westphalen, U. Kreibig, J. Rostalski, H. LuK th, and D. Meissner, “Metal cluster enhanced organic solar cells”, Sol. Energ. Mat. Sol. C. 61, 97 (2000)

    [11] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating, Springer-Verlog, Berlin, Heidelberg, New York, London, Paris, Tokyo (1998).

    [12] R. W. Wood, Philos. Mag. 4, 396 (1902).

    [13] U. Fano, J. Opt. Soc. Am. 31, 213 (1941).

    [14] 邱國斌、蔡定平,“金屬表面電漿簡介”,物理雙月刊,28,2 (2006).

    [15] E. Hutter, J. H. Fendler,“Exploitation of localized surface plasmon resonance”, Adv. Matter. 16, 1685 (2004).

    [16] U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters, vol. 25, Springer-Verlag, Heidelberg, Germany. 1995.

    [17] D. L. Feldheim, C. A. Foss,“Metal nanoparticles :synthesis, characterization, and applications”, Marcel Dekker, New York (2002).

    [18] E. Abbe. Archiv. Mickros. Anat., 9, 413-417(1873)

    [19] M. Born, E. Wolf,“Principles of Optics”, 81-84(1959)

    [20] 黃貞翰,探針強化進場掃描式光學顯微鏡之研製,碩士論文,國立成功大學 (2006)

    [21] 高宗聖, 蔡定平,“近場光學新視界”,科學發展,386 (2005)

    [22] R. Young, J. Ward, and F.Scire,“The Topografiner: An Instrument for Measuring Surface Microtopography”, Review of Scientific Instruments 43, 999 (1972).

    [23] D. W. Abraham, H. J. Mamin, E. Ganz and J. Clarke, J.Res. Dev. 30, 492 (1986).

    [24] G. Binning, C. F. Quate, and C. H. Gerber, Phys. Rev. Lett. 56, 930(1986).

    [25] E. H. Synge, Philos. Mag. 6, 356(1928)

    [26] E. Betzig, P. L. Finn, and J. S. Weiner,“COMBINED SHEAR FORCE AND NEAR-FIELD SCANNING OPTICAL MICROSCOPY”Appl. Phys. Lett. 60, 2484(1992)

    [27] M. A.Paesler, P. J.Moyer,“Near-field optics : theory, instrumentation, and applications”, J. Wiley, New York (1996).

    [28] 國立成功大學微奈米科技研究中心,近場掃描式光學顯微鏡sop。

    [29] J. Kim,“Recent progress of nano-technology with NSOM”,Micron 38,409 (2007)

    下載圖示 校內:2017-07-25公開
    校外:2017-07-25公開
    QR CODE