簡易檢索 / 詳目顯示

研究生: 洪于婷
Hung, Yu-Ting
論文名稱: 探討惡性瘧原蟲的質體樣細胞器DNA聚合酶之生化特性
Biochemical Characterization of Apicoplast DNA Polymerase of Plasmodium falciparum
指導教授: 阮振維
Ruan, Jhen-Wei
共同指導教授: 陳呈堯
Chen, Cheng-Yao
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 126
中文關鍵詞: 瘧疾惡性瘧原蟲質體樣細胞器DNA聚合酶環狀結構O1金精三羧酸
外文關鍵詞: Malaria, Apicomplexa, Plasmodium falciparum, apicoplast, DNA polymerase, aurintricarboxylic acid, O1-Helix
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 惡性瘧原蟲(Plasmodium falciparum)屬原生真核生物之頂複門(Apicomplexa)寄生蟲,是造成瘧疾的主要瘧原蟲,在全球每年導致數百萬人死亡。這類頂複門寄生蟲通常都有一個類似葉綠體但無法行光合作用的細胞器,稱作質體樣細胞器(apicoplast),這個胞器有屬於自己的約35-kb雙股環狀DNA,此DNA由高達86.9 %的A/T序列組成,對寄生蟲的存活不可或缺,而質體樣細胞器的DNA複製主要是靠一個聚合酶Pom1來合成。Pom1由三個結構域所組成:DNA引子酶、DNA解旋酶和DNA聚合酶(KPom1)所組成,對寄生蟲的存活缺一不可。此外,Pom1的基因並沒被發現有同源於哺乳類,因此有潛力作為一個的發展抗瘧疾藥物標的標的,而本研究的目的即是探討KPom1的生化特性與功能。而過去有文獻指出金精三羧酸 (aurintricarboxylic acid)可以抑制KPom1的合成,而在我們的實驗中也發現金精三羧酸會抑制KPom1和另一個同是頂複門的弓漿蟲(Toxoplasma gondii)之質體樣細胞器聚合酶(ToxoPol),然而卻不會干擾大腸桿菌DNA聚合酶I的Klenow片段(KF)之合成。此外,KPom1與KF同源,但KPom1擁有一個非典型的環狀結構O1 (Helix O1)是KF沒有的,而ToxoPol也被發現擁有一個類似Helix O1的環狀構造。我們也發現缺乏Helix O1的KPom1不受金精三羧酸的抑制,且3端降解端 (the 3’-exonuclease site) 活性變弱,而有類似Helix O1環狀構造的ToxoPol則是在結構突變後,同樣地也不受金精三羧酸的影響,而插入KPom1-Helix O1的KF失去了DNA鏈置換 (strand-displacement) 的活性,並受到金精三羧酸的抑制,這表示金精三羧酸影響聚合酶活性的位置與非典型的環狀結構O1有關聯;另外,Helix O1在調控DNA聚合酶要傾向合成端 (polymerase site) 還是3’的降解端扮演著重要角色,最後我的研究結果也發現金精三羧酸也抑制KPom1 3’的降解端的活性,這些結果都有助於抗瘧疾藥物的發展。

    Plasmodium falciparum, a unicellular parasite in the phylum of Apicomplexa, is a causative agent of malaria disease and causes millions of deaths annually. The apicomplexan parasites commonly possess a chloroplast-like and non-photosynthetic apicoplast. The apicoplast genome is a circular, double-stranded, and ~35-kb DNA. It is rich in A-T sequences (86.9%). The DNA replication of Plasmodial apicoplast is solely achieved by the polymerase of malaria 1 (Pom1), which harbors a DNA primase, DNA helicase, and DNA polymerase domain, respectively. The deletion of either domain of Pom1 disrupts the apicoplast DNA replication and leads to the death of parasite. Pom1 has no direct orthologs in mammals and, thus, makes it an enticing target for new drug development against the resurging malaria disease. The DNA polymerase domain, designed as KPom1, is homologous to the Klenow fragment (KF) of E. coli DNA polymerase I. In the current study, I have discovered that aurintricarboxylic acid (ATA) is a potent inhibitor against KPom1. In the in vitro activity assays, ATA inhibits the nucleotide incorporation by KPom1WT and the apicoplast DNA polymerase from other Apicomplexa, Toxoplasma gondii (ToxoPol WT). ATA shows no effect on the DNA synthesis function of KF WT. The protein sequence and structural analysis reveals that both KPom1 and ToxoPol WT contain an atypical Helix O1 in the finger subdomain, which does not exist in KF WT. Mutations at the Helix O1 of on either KPom1or ToxoPol WT greatly reduce the inhibitory effect of ATA on their DNA strand-displacement synthesis (SDS) activity of KPom1. On the contrary, KF with a KPom1 O1-Helix insertion (KFYYY) in the finger subdomain is sensitive to the ATA treatment and has a reduced DNA SDS function in the presence of ATA. Furthermore, I confirmed that the unique Helix O1 plays a pivotal role in regulating the switching between the 3’-exonuclease site and the polymerase site of the KPom1. Altogether, the regulatory properties of Helix O1 and its unique interaction with ATA may provide the model for developing the potential KPom1 inhibitors, which may be used as anti-malaria compounds.

    中文摘要 I Abstract II 誌謝 IV Table of Contents V Abbreviations XII Chapter 1. Introduction 1 1.1. Malaria 1 1.1.1. Clinical symptoms and epidemiology 1 1.1.2. Preventions and treatments 1 1.1.3. The emergence of drug resistant malaria 2 1.2. Apicoplast 3 1.2.1. Features and functions of apicoplast 3 1.2.2. DNA polymerase targeted to the apicoplast 3 1.2.3. Poml is a potential drug target against malaria 4 Chapter 2. Objectives 5 Chapter 3. Materials and Methods 6 3.1. Materials 6 3.2. DNA cloning 6 3.3. Expression and purification of wild-type KPom1 and its mutants 7 3.4. Expression and purification of wild-type Klenow fragment (KF) and its mutants 9 3.5. Expression and purification of wild-type apicoplast DNA polymerase from Toxoplasma gondii (ToxoPol) 10 3.6. Oligonucleotides 12 3.7. In vitro primer-extension assay 12 3.8. The effect of the Aurintricarboxylic acid (ATA) on Pom1 assays 13 3.9. The effect of ATA on exonuclease site assays 14 3.10. DNA strand-displacement synthesis (SDS) and nick-translation assays 15 3.11. The polymerase to exonuclease switch assays 16 3.12. The exonuclease to polymerase switch assays 17 Chapter 4. Results 19 4.1. The purification of KPom1, Klenow fragment (KF), ToxoPol and their 19 mutant proteins 19 4.2. The 3’→5’ exonuclease function of KPom1 limits its DNA strand-displacement synthesis activity on the A/T, but not G/C-gapped DNA template 19 4.3. ATA preferentially inhibits the pyrimidine nucleotide incorporation by KPom1WT 20 4.4. ATA preferentially inhibits dATP and dTTP incorporation by KPom1exo- 20 4.5. Mutations at the Helix O1 of KPom1 alleviate the ATA inhibition 21 4.6. The deletion of the Helix O1 of KPom1exo- alleviates the ATA inhibition 22 4.7. ATA doesn’t perturb the DNA replication function of wild-type Klenow fragments (KF) and exonuclease-deficient KF (KFexo-) 22 4.8. ATA doesn’t perturb the DNA replication function of wild-type KF and but the insertion of KPom1’s Helix O1 into KF (KFYYY) is affected 22 4.9. ATA doesn’t inhibit the DNA replication function of KFexo- but the insertion of KPom1’s Helix O1 into KFexo- (KFexo-YYY) is affected 23 4.10. The ATA inhibitory effect on the DNA strand-displacement synthesis activity of ToxoPolY875A/Y880A is partially relieved as compared to ToxoPolWT 23 4.11. ATA limits the 3’ →5’ exonuclease site of KPom1 to degrade DNA templates in the absence of nucleotide 24 4.12. ATA limits the 3’ →5’exonuclease site of KPom1 to degrade DNA 25 4.13. ATA does not affect degradation of the DNA templates at the 3’→5’ exonuclease site of ToxoPolWT and ToxoPolY875A/Y880A 26 4.14. KF with an O1-Helix insertion (KFYYY) limits the DNA strand-displacement synthesis function 27 4.15. KFexo- with an O1-Helix insertion (KFexo-YYY) relieves strand-displacement synthesis activity 27 4.16. DNA strand-displacement synthesis activity is slightly restored when the Helix O1 of KPom1 is deleted (KPom1ΔYYY) 28 4.17. The strand-displacement synthesis activity of KPom1ΔYYY on the gapped DNA-RNA hybrid is restored 28 4.18. The 3’→5’ exonuclease activity of O1-Helix-mutanted KPom1 is reduced as compared to KPom1WT and O1-Helix-mutanted KPom1 is more likely to switch to 5’→3’DNA polymerase site than KPom1WT 29 4.19. O1-Helix-mutant KPom1 (KPom1Y481A/Y485A/Y486A, and KPom1ΔYYY) is more likely to mis-incorporate nucleotides than KPom1WT 31 4.20. The Y875A and Y880A mutations at the O1-Helix-like loop of ToxoPol do not influence the partitioning between 3’→5’ exonuclease and 5’→3’ DNA polymerase site 31 4.21. Both ToxoPolWT and ToxoPolY875A/Y880A tend to mis-incorporate incorrect nucleotide. 32 Chapter 5. Discussion 33 Chapter 6. Conclusion 39 Tables 40 Table 1. The oligonucleotides used for DNA cloning 40 Table 2. The oligonucleotides used for the biochemical assays 41 Figures 42 Figure 1. The purities of KPom1 and its mutant proteins used in this study. 42 Figure 2. The purities of Klenow fragment (KF) from E. coli DNA polymerase I and its mutant proteins used in this study. 43 Figure 3. The purities of apicoplast DNA polymerase from Toxoplasma gondii (ToxoPol) and its mutant protein. 44 Figure 4. ATA shows no effect on the nucleotide-incorporation and DNA strand-displacement synthesis activities of both KPom1WT and KPom1△YYY. 45 Figure 5. ATA shows no effect on the nucleotide-incorporation and DNA strand-displacement synthesis activities of both KPom1WT and KPom1△YYY. 46 Figure 6. ATA partially inhibits the nucleotide-incorporation and DNA strand-displacement synthesis activities of both KPom1WT and KPom1△YYY. 47 Figure 7. ATA partially inhibits the nucleotide-incorporation and DNA strand-displacement synthesis activities of both KPom1WT and KPom1△YYY. 48 Figure 8. The DNA strand-displacement synthesis activity of KPom1exo- is inhibited by ATA, but the ATA inhibitory effect is partially relieved on KPom1exo-△YYY. 49 Figure 9. The DNA strand-displacement synthesis activity of KPom1exo- is inhibited by ATA, but the ATA inhibitory effect is partially relieved on KPom1exo-△YYY. 50 Figure 10. The DNA strand-displacement synthesis activity of KPom1exo- is inhibited by ATA, but the ATA inhibitory effect is partially relieved on KPom1exo-△YYY. 51 Figure 11. The DNA strand-displacement synthesis activity of KPom1exo- is inhibited by ATA, but the ATA inhibitory effect is partially relieved on KPom1exo-△YYY. 52 Figure 12. The ATA inhibitory effect on the DNA strand-displacement synthesis activity of KPom1 Y481F/Y485F/Y486F is partially relieved. 54 Figure 13. The ATA inhibitory effect on the DNA strand-displacement synthesis activity of KPom1 Y481A/Y485A/Y486A is greatly relieved. 56 Figure 14. The DNA strand-displacement synthesis activity of KFYYY is greatly inhibited by ATA 57 Figure 15. The DNA strand-displacement synthesis activity of KFYYY is greatly inhibited by ATA 58 Figure 16. The DNA strand-displacement synthesis activity of KFYYY is greatly inhibited by ATA 59 Figure 17. The DNA strand-displacement synthesis activity of KFYYY is greatly inhibited by ATA 60 Figure 18. The DNA strand-displacement synthesis activity of KFexo-YYY is partially inhibited by ATA 61 Figure 19. The DNA strand-displacement synthesis activity of KFexo-YYY is partially inhibited by ATA 62 Figure 20. The DNA strand-displacement synthesis activity of KFexo-YYY is partially inhibited by ATA 63 Figure 21. The DNA strand-displacement synthesis activity of KFexo-YYY is partially inhibited by ATA 64 Figure 22. The ATA inhibitory effect on the DNA strand-displacement synthesis activity of ToxoPolY875A/Y880A is partially relieved as compared to ToxoPolWT. 65 Figure 23. The ATA inhibitory effect on the DNA strand-displacement synthesis activity of ToxoPolY875A/Y880A is partially relieved as compared to ToxoPolWT. 66 Figure 24. The ATA inhibitory effect on the DNA strand-displacement synthesis activity of ToxoPolY875A/Y880A is partially relieved as compared to ToxoPolWT. 67 Figure 25. The ATA inhibitory effect on the DNA strand-displacement synthesis activity of ToxoPolY875A/Y880A is partially relieved as compared to ToxoPolWT. 68 Figure 26. ATA limits the 3’→5’ exonuclease function of KPom1WT and KPom1Y481A/Y485A/Y486A in the absence of nucleotide. 70 Figure 27. ATA limits the 3’→5’ exonuclease function of KPom1WT and KPom1ΔYYY in the absence of nucleotide. 72 Figure 28. ATA has no influence on the 3’→5’ exonuclease function of KPom1exo- in the absence of nucleotides. 73 Figure 29. ATA has no influence on the 3’→5’ exonuclease function of KPom1exo-ΔYYY in the absence of nucleotides. 74 Figure 30. ATA inhibits the 3’→5’ exonuclease function of KPom1WT and KPom1Y481A/Y485A/Y486A to degrade the primer with mis-incorporated nucleotides. 76 Figure 31. ATA limits the 3’→5’ exonuclease function of KPom1WT and KPom1ΔYYY to degrade the primer with mis-incorporated nucleotides. 78 Figure 32. ATA does not affect the switching between the DNA polymerase and 3’→5’ exonuclease site of KPom1exo- 79 Figure 33. ATA does not affect the switching between the DNA polymerase and 3’→5’ exonuclease site of KPom1exo-ΔYYY 80 Figure 34. ATA does not affect the DNA degradation activity of ToxoPolWT. 81 Figure 35. ATA does not affect the DNA degradation activity of ToxoPolY875A/Y880A. 82 Figure 36. The nick-translation function of KFYYY is restrained. 83 Figure 37. The DNA strand-displacement synthesis activity of KFYYY is restrained. 84 Figure 38. The nick-translation activity of KFexo-YYY is partially relieved. 85 Figure 39. The strand-displacement synthesis activity of KFexo-YYY is partially relieved. 86 Figure 40. The DNA nick-translation activity of both KPom1WT and KPom1ΔYYY are not prominent. 87 Figure 41. The strand-displacement synthesis activity of KPom1ΔYYY on a 3A-gapped DNA is partially restored. 88 Figure 42. The strand-displacement synthesis activity of KPom1ΔYYY on a 3T-gapped DNA is partially restored. 89 Figure 43. The strand-displacement synthesis activity of KPom1ΔYYY on a 3C-gapped DNA is restored. 90 Figure 44. The strand-displacement synthesis activity of KPom1ΔYYY on a 3G-gapped DNA is restored. 91 Figure 45. The strand-displacement synthesis activity of KPom1ΔYYY on a 3A-gapped DNA-RNA hybrid is restored. 92 Figure 46. The strand-displacement synthesis activity of KPom1ΔYYY on a 3T-gapped DNA-RNA hybrid is restored. 93 Figure 47. The strand-displacement synthesis activity of KPom1ΔYYY on a 3C-gapped DNA-RNA hybrid is restored. 94 Figure 48. The strand-displacement synthesis activity of KPom1ΔYYY on a 3G-gapped DNA-RNA hybrid is restored. 95 Figure 49. The 3’→5’ exonuclease activity of mutant KPom1Y481A/Y485A/Y486A is reduced as compared to KPom1WT. 96 Figure 50. The 3’→5’ exonuclease activity of mutant KPom1ΔYYY is reduced as compared to KPom1WT. 97 Figure 51. Mutant KPom1Y481A/Y485A/Y486A is more likely to switch to 5’→3’DNA polymerase site than KPom1WT. 98 Figure 52. KPom1ΔYYY is more likely to switch to 5’→3’DNA polymerase site than KPom1WT. 99 Figure 53. KPom1exo-ΔYYY is more likely to switch to 5’→3’DNA polymerase site than KPom1exo-. 100 Figure 54. The Y→A mutations at O1-Helix influence the partitioning between 3’→5’exonuclease and 5’→3’DNA polymerase site. 101 Figure 55. The deletion of O1-Helix affects the partitioning between the 3’→5’ exonuclease and the 5’→3’ DNA polymerase site. 102 Figure 56. KPom1exo- and KPom1exo-ΔYYY do not remove the mismatched nucleotide from the 3’-terminus of the primer. 103 Figure 57. KPom1Y481A/Y485A/Y486A is more likely to mis-incorporate the dTTP nucleotide than KPom1WT. 104 Figure 58. KPom1Y481A/Y485A/Y486A is more likely to mis-incorporate dGTP nucleotide than KPom1WT. 105 Figure 59. KPom1Y481A/Y485A/Y486A is more likely to mis-incorporate dCTP nucleotide than KPom1WT. 106 Figure 60. KPom1ΔYYY is more likely to mis-incorporate dTTP nucleotide than KPom1WT. 107 Figure 61. KP KPom1ΔYYY mis-incorporates incorrect dGTP nucleotide more efficiently than the wild-type KPom1 (KPom1WT). 108 Figure 62. KPom1ΔYYY mis-incorporates incorrect dCTP nucleotide more efficiently than the wild-type KPom1 (KPom1WT). 109 Figure 63. The mutations (Y875A/Y880A) at the O1-Helix-like loop of ToxoPol do not affect the partitioning between 3’→5’ exonuclease and 5’→3’ DNA polymerase site. 110 Figure 64. Both ToxoPolWT and ToxoPolY875A/Y880A tend to mis-incorporate incorrect nucleotide. 111 References 112 Appendix 116 Appendix 1. The domain organization of the DNA polymerase of malaria 1 (Pom1). 116 Appendix 2. The structure of KPom1 can be divided into three distinct subdomains (palm, thumb, and finger). 116 Appendix 3. The sequence alignments of the conserved motifs of DNA polymerase domain of apicoplast DNA polymerase (PfPrex or KPom1) from Plasmodium falciparum, E. coli DNA Pol I (EcPol I), and human Pol ν (hPol ν). 117 Appendix 4. Structure alignment of the DNA polymerase domain of apicoplast DNA polymerase of P. falciparum (KPom1) and the proteolytic fragment of E. coli DNA polymerase I (Klenow Fragment, designated as KF) (27, 36). 117 Appendix 5. Atypical regions of apicoplast DNA polymerase from P. falciparum as compared to other A-family DNA Polymerases (28). 118 Appendix 6. KPom1 and its phylogeny 120 Appendix 7. The pET15b vector map 121 Appendix 8. The pET28a vector map 122 Appendix 9. Unique Helix O1 structure of KPom1 (blue) compared to Klenow fragment (gray) of E. coli DNA Pol I (27). 123 Appendix 10. The protein sequence alignments of the conserved motifs of DNA polymerase domain of Pom1 from Plasmodium falciparum, and the apicoplast DNA polymerase from Toxoplasma gondii (ToxoPol). 124 Appendix 11. The structural region of KPom1 that interact with ATA. 125 Appendix 12. Kinetic parameters of exonuclease-deficient and mutation at Helix-O1- mutated KPom1 (27). 126

    1. R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, S. I. Hay, The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214-217 (2005).
    2. W. H. Organization, World Malaria Report 2019 (2019).
    3. I. Mueller, P. A. Zimmerman, J. C. Reeder, Plasmodium malariae and Plasmodium ovale - the 'bashful' malaria parasites. Trends in Parasitology 23, 278-283 (2007).
    4. I. Vythilingam et al., Plasmodium knowlesi in humans, macaques and mosquitoes in peninsular Malaysia. Parasites & vectors 1, 26 (2008).
    5. P. Van den Eede et al., Human Plasmodium knowlesi infections in young children in central Vietnam. Malar. J. 8, (2009).
    6. C. Barillas-Mury, S. Kumar, Plasmodium-mosquito interactions: a tale of dangerous liaisons. Cell. Microbiol. 7, 1539-1545 (2005).
    7. R. S. Bray, P. C. C. Garnham, THE life-cycle of primate malaria parasites. Br. Med. Bull. 38, 117-122 (1982).
    8. A. Mulu et al., Epidemiological and clinical correlates of malaria-helminth co-infections in southern Ethiopia. Malar. J. 12, (2013).
    9. D. G. Lalloo et al., UK malaria treatment guidelines. J. Infect. 54, 111-121 (2007).
    10. D. Schellenberg et al., The safety and efficacy of sulfadoxine-pyrimethamine, amodiaquine, and their combination in the treatment of uncomplicated Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg. 67, 17-23 (2002).
    11. J. P. Daily, Malaria 2017: Update on the Clinical Literature and Management. Curr. Infect. Dis. Rep. 19, 28 (2017).
    12. W. H. Organization, Guidelines for the treatment of malaria. (World Health Organization, 2015).
    13. I. Petersen, R. Eastman, M. Lanzer, Drug-resistant malaria: Molecular mechanisms and implications for public health. FEBS Lett. 585, 1551-1562 (2011).
    14. J. A. Najera, M. Gonzalez-Silva, P. L. Alonso, Some Lessons for the Future from the Global Malaria Eradication Programme (1955-1969). PLoS Med. 8, e1000412 (2011).
    15. D. Clyde, G. Shute, Resistance of Plasmodium falciparum in Tanganyika to pyrimethamine administered at weekly intervals. Trans. R. Soc. Trop. Med. Hyg. 51, 505-513 (1957).
    16. D. Menard et al., A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms. N. Engl. J. Med. 374, 2453-2464 (2016).
    17. N. Arisue, T. Hashimoto, Phylogeny and evolution of apicoplasts and apicomplexan parasites. Parasitol. Int. 64, 254-259 (2015).
    18. L. Sheiner, A. B. Vaidya, G. I. McFadden, The metabolic roles of the endosymbiotic organelles of Toxoplasma and Plasmodium spp. Curr. Opin. Microbiol. 16, 452-458 (2013).
    19. R. J. M. Wilson et al., Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 261, 155-172 (1996).
    20. S. R. Kennedy, C. Y. Chen, M. W. Schmitt, C. N. Bower, L. A. Loeb, The biochemistry and fidelity of synthesis by the apicoplast genome replication DNA polymerase Pfprex from the malaria parasite Plasmodium falciparum. J. Mol. Biol. 410, 27-38 (2011).
    21. S. E. Lindner, M. Llinas, J. L. Keck, S. H. I. Kappe, The primase domain of PfPrex is a proteolytically matured, essential enzyme of the apicoplast. Mol. Biochem. Parasitol. 180, 69-75 (2011).
    22. F. Seow et al., The plastidic DNA replication enzyme complex of Plasmodium falciparum. Mol. Biochem. Parasitol. 141, 145-153 (2005).
    23. R. Gilbertogonzalez, R. S. Haxo, T. Schleich, Mechanism of action of polymeric aurintricaboxylic acid, a potent inhibitor of protein-nucleic acid interactions. Biochemistry 19, 4299-4303 (1980).
    24. M. E. Miller, E. E. Parrott, R. Singh, S. W. Nelson, A high-throughput assay to identify inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum. J. Biomol. Screen. 19, 966-972 (2014).
    25. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 (1976).
    26. R. A. Ganai, G. O. Bylund, E. Johansson, Switching between polymerase and exonuclease sites in DNA polymerase epsilon. Nucleic Acids Res. 43, 932-942 (2015).
    27. M. E. Milton, J. Y. Choe, R. B. Honzatko, S. W. Nelson, Crystal Structure of the Apicoplast DNA Polymerase from Plasmodium falciparum: The First Look at a Plastidic A-Family DNA Polymerase. J. Mol. Biol. 428, 3920-3934 (2016).
    28. T. W. Schoenfeld et al., Lateral Gene Transfer of Family A DNA Polymerases between Thermophilic Viruses, Aquificae, and Apicomplexa. Mol. Biol. Evol. 30, 1653-1664 (2013).
    29. P. Xie, J. R. Sayers, A model for transition of 5'-nuclease domain of DNA polymerase I from inert to active modes. PLoS One 6, e16213 (2011).
    30. J. M. Roberts‐Lewis et al., Aurintricarboxylic acid protects hippocampal neurons from NMDA‐and ischemia‐induced toxicity in vivo. J. Neurochem. 61, 378-381 (1993).
    31. M. E. Arana, T. A. Kunkel, Mutator phenotypes due to DNA replication infidelity. Semin. Cancer Biol. 20, 304-311 (2010).
    32. L. J. Reha-Krantz, DNA polymerase proofreading: Multiple roles maintain genome stability. Biochimica et. Biophysica Acta-Proteins and Proteomics 1804, 1049-1063 (2010).
    33. S. A. Stocki, R. L. Nonay, L. J. Rehakrantz, Dynamics of bacteriophage T4 DNA polymerase function: identification of amino acid residues that affect switching between polymerase and 3’→5’ exonuclease activities. J. Mol. Biol. 254, 15-28 (1995).
    34. S. Ghosh, Y. Goldgur, S. Shuman, Mycobacterial DNA polymerase I: activities and crystal structures of the POL domain as apoenzyme and in complex with a DNA primer-template and of the full-length FEN/EXO POL enzyme. Nucleic Acids Res. 48, 3165-3180 (2020).
    35. V. Mizrahi, P. Huberts, Deoxy- and dideoxynucleotide discrimination and identification of critical 5′ nuclease domain residues of the DNA polymerase I from Mycobacterium tuberculosis. Nucleic Acids Res. 24, 4845-4852 (1996).
    36. L. S. Beese, V. Derbyshire, T. A. Steitz, Structure of DNA OF DNA polymerase-I Klenow fragment bound to duplex DNA. Science 260, 352-355 (1993).

    下載圖示 校內:2025-06-01公開
    校外:2025-06-01公開
    QR CODE