| 研究生: |
洪于婷 Hung, Yu-Ting |
|---|---|
| 論文名稱: |
探討惡性瘧原蟲的質體樣細胞器DNA聚合酶之生化特性 Biochemical Characterization of Apicoplast DNA Polymerase of Plasmodium falciparum |
| 指導教授: |
阮振維
Ruan, Jhen-Wei |
| 共同指導教授: |
陳呈堯
Chen, Cheng-Yao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 瘧疾 、惡性瘧原蟲 、質體樣細胞器 、DNA聚合酶 、環狀結構O1 、金精三羧酸 |
| 外文關鍵詞: | Malaria, Apicomplexa, Plasmodium falciparum, apicoplast, DNA polymerase, aurintricarboxylic acid, O1-Helix |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
惡性瘧原蟲(Plasmodium falciparum)屬原生真核生物之頂複門(Apicomplexa)寄生蟲,是造成瘧疾的主要瘧原蟲,在全球每年導致數百萬人死亡。這類頂複門寄生蟲通常都有一個類似葉綠體但無法行光合作用的細胞器,稱作質體樣細胞器(apicoplast),這個胞器有屬於自己的約35-kb雙股環狀DNA,此DNA由高達86.9 %的A/T序列組成,對寄生蟲的存活不可或缺,而質體樣細胞器的DNA複製主要是靠一個聚合酶Pom1來合成。Pom1由三個結構域所組成:DNA引子酶、DNA解旋酶和DNA聚合酶(KPom1)所組成,對寄生蟲的存活缺一不可。此外,Pom1的基因並沒被發現有同源於哺乳類,因此有潛力作為一個的發展抗瘧疾藥物標的標的,而本研究的目的即是探討KPom1的生化特性與功能。而過去有文獻指出金精三羧酸 (aurintricarboxylic acid)可以抑制KPom1的合成,而在我們的實驗中也發現金精三羧酸會抑制KPom1和另一個同是頂複門的弓漿蟲(Toxoplasma gondii)之質體樣細胞器聚合酶(ToxoPol),然而卻不會干擾大腸桿菌DNA聚合酶I的Klenow片段(KF)之合成。此外,KPom1與KF同源,但KPom1擁有一個非典型的環狀結構O1 (Helix O1)是KF沒有的,而ToxoPol也被發現擁有一個類似Helix O1的環狀構造。我們也發現缺乏Helix O1的KPom1不受金精三羧酸的抑制,且3端降解端 (the 3’-exonuclease site) 活性變弱,而有類似Helix O1環狀構造的ToxoPol則是在結構突變後,同樣地也不受金精三羧酸的影響,而插入KPom1-Helix O1的KF失去了DNA鏈置換 (strand-displacement) 的活性,並受到金精三羧酸的抑制,這表示金精三羧酸影響聚合酶活性的位置與非典型的環狀結構O1有關聯;另外,Helix O1在調控DNA聚合酶要傾向合成端 (polymerase site) 還是3’的降解端扮演著重要角色,最後我的研究結果也發現金精三羧酸也抑制KPom1 3’的降解端的活性,這些結果都有助於抗瘧疾藥物的發展。
Plasmodium falciparum, a unicellular parasite in the phylum of Apicomplexa, is a causative agent of malaria disease and causes millions of deaths annually. The apicomplexan parasites commonly possess a chloroplast-like and non-photosynthetic apicoplast. The apicoplast genome is a circular, double-stranded, and ~35-kb DNA. It is rich in A-T sequences (86.9%). The DNA replication of Plasmodial apicoplast is solely achieved by the polymerase of malaria 1 (Pom1), which harbors a DNA primase, DNA helicase, and DNA polymerase domain, respectively. The deletion of either domain of Pom1 disrupts the apicoplast DNA replication and leads to the death of parasite. Pom1 has no direct orthologs in mammals and, thus, makes it an enticing target for new drug development against the resurging malaria disease. The DNA polymerase domain, designed as KPom1, is homologous to the Klenow fragment (KF) of E. coli DNA polymerase I. In the current study, I have discovered that aurintricarboxylic acid (ATA) is a potent inhibitor against KPom1. In the in vitro activity assays, ATA inhibits the nucleotide incorporation by KPom1WT and the apicoplast DNA polymerase from other Apicomplexa, Toxoplasma gondii (ToxoPol WT). ATA shows no effect on the DNA synthesis function of KF WT. The protein sequence and structural analysis reveals that both KPom1 and ToxoPol WT contain an atypical Helix O1 in the finger subdomain, which does not exist in KF WT. Mutations at the Helix O1 of on either KPom1or ToxoPol WT greatly reduce the inhibitory effect of ATA on their DNA strand-displacement synthesis (SDS) activity of KPom1. On the contrary, KF with a KPom1 O1-Helix insertion (KFYYY) in the finger subdomain is sensitive to the ATA treatment and has a reduced DNA SDS function in the presence of ATA. Furthermore, I confirmed that the unique Helix O1 plays a pivotal role in regulating the switching between the 3’-exonuclease site and the polymerase site of the KPom1. Altogether, the regulatory properties of Helix O1 and its unique interaction with ATA may provide the model for developing the potential KPom1 inhibitors, which may be used as anti-malaria compounds.
1. R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, S. I. Hay, The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214-217 (2005).
2. W. H. Organization, World Malaria Report 2019 (2019).
3. I. Mueller, P. A. Zimmerman, J. C. Reeder, Plasmodium malariae and Plasmodium ovale - the 'bashful' malaria parasites. Trends in Parasitology 23, 278-283 (2007).
4. I. Vythilingam et al., Plasmodium knowlesi in humans, macaques and mosquitoes in peninsular Malaysia. Parasites & vectors 1, 26 (2008).
5. P. Van den Eede et al., Human Plasmodium knowlesi infections in young children in central Vietnam. Malar. J. 8, (2009).
6. C. Barillas-Mury, S. Kumar, Plasmodium-mosquito interactions: a tale of dangerous liaisons. Cell. Microbiol. 7, 1539-1545 (2005).
7. R. S. Bray, P. C. C. Garnham, THE life-cycle of primate malaria parasites. Br. Med. Bull. 38, 117-122 (1982).
8. A. Mulu et al., Epidemiological and clinical correlates of malaria-helminth co-infections in southern Ethiopia. Malar. J. 12, (2013).
9. D. G. Lalloo et al., UK malaria treatment guidelines. J. Infect. 54, 111-121 (2007).
10. D. Schellenberg et al., The safety and efficacy of sulfadoxine-pyrimethamine, amodiaquine, and their combination in the treatment of uncomplicated Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg. 67, 17-23 (2002).
11. J. P. Daily, Malaria 2017: Update on the Clinical Literature and Management. Curr. Infect. Dis. Rep. 19, 28 (2017).
12. W. H. Organization, Guidelines for the treatment of malaria. (World Health Organization, 2015).
13. I. Petersen, R. Eastman, M. Lanzer, Drug-resistant malaria: Molecular mechanisms and implications for public health. FEBS Lett. 585, 1551-1562 (2011).
14. J. A. Najera, M. Gonzalez-Silva, P. L. Alonso, Some Lessons for the Future from the Global Malaria Eradication Programme (1955-1969). PLoS Med. 8, e1000412 (2011).
15. D. Clyde, G. Shute, Resistance of Plasmodium falciparum in Tanganyika to pyrimethamine administered at weekly intervals. Trans. R. Soc. Trop. Med. Hyg. 51, 505-513 (1957).
16. D. Menard et al., A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms. N. Engl. J. Med. 374, 2453-2464 (2016).
17. N. Arisue, T. Hashimoto, Phylogeny and evolution of apicoplasts and apicomplexan parasites. Parasitol. Int. 64, 254-259 (2015).
18. L. Sheiner, A. B. Vaidya, G. I. McFadden, The metabolic roles of the endosymbiotic organelles of Toxoplasma and Plasmodium spp. Curr. Opin. Microbiol. 16, 452-458 (2013).
19. R. J. M. Wilson et al., Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 261, 155-172 (1996).
20. S. R. Kennedy, C. Y. Chen, M. W. Schmitt, C. N. Bower, L. A. Loeb, The biochemistry and fidelity of synthesis by the apicoplast genome replication DNA polymerase Pfprex from the malaria parasite Plasmodium falciparum. J. Mol. Biol. 410, 27-38 (2011).
21. S. E. Lindner, M. Llinas, J. L. Keck, S. H. I. Kappe, The primase domain of PfPrex is a proteolytically matured, essential enzyme of the apicoplast. Mol. Biochem. Parasitol. 180, 69-75 (2011).
22. F. Seow et al., The plastidic DNA replication enzyme complex of Plasmodium falciparum. Mol. Biochem. Parasitol. 141, 145-153 (2005).
23. R. Gilbertogonzalez, R. S. Haxo, T. Schleich, Mechanism of action of polymeric aurintricaboxylic acid, a potent inhibitor of protein-nucleic acid interactions. Biochemistry 19, 4299-4303 (1980).
24. M. E. Miller, E. E. Parrott, R. Singh, S. W. Nelson, A high-throughput assay to identify inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum. J. Biomol. Screen. 19, 966-972 (2014).
25. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 (1976).
26. R. A. Ganai, G. O. Bylund, E. Johansson, Switching between polymerase and exonuclease sites in DNA polymerase epsilon. Nucleic Acids Res. 43, 932-942 (2015).
27. M. E. Milton, J. Y. Choe, R. B. Honzatko, S. W. Nelson, Crystal Structure of the Apicoplast DNA Polymerase from Plasmodium falciparum: The First Look at a Plastidic A-Family DNA Polymerase. J. Mol. Biol. 428, 3920-3934 (2016).
28. T. W. Schoenfeld et al., Lateral Gene Transfer of Family A DNA Polymerases between Thermophilic Viruses, Aquificae, and Apicomplexa. Mol. Biol. Evol. 30, 1653-1664 (2013).
29. P. Xie, J. R. Sayers, A model for transition of 5'-nuclease domain of DNA polymerase I from inert to active modes. PLoS One 6, e16213 (2011).
30. J. M. Roberts‐Lewis et al., Aurintricarboxylic acid protects hippocampal neurons from NMDA‐and ischemia‐induced toxicity in vivo. J. Neurochem. 61, 378-381 (1993).
31. M. E. Arana, T. A. Kunkel, Mutator phenotypes due to DNA replication infidelity. Semin. Cancer Biol. 20, 304-311 (2010).
32. L. J. Reha-Krantz, DNA polymerase proofreading: Multiple roles maintain genome stability. Biochimica et. Biophysica Acta-Proteins and Proteomics 1804, 1049-1063 (2010).
33. S. A. Stocki, R. L. Nonay, L. J. Rehakrantz, Dynamics of bacteriophage T4 DNA polymerase function: identification of amino acid residues that affect switching between polymerase and 3’→5’ exonuclease activities. J. Mol. Biol. 254, 15-28 (1995).
34. S. Ghosh, Y. Goldgur, S. Shuman, Mycobacterial DNA polymerase I: activities and crystal structures of the POL domain as apoenzyme and in complex with a DNA primer-template and of the full-length FEN/EXO POL enzyme. Nucleic Acids Res. 48, 3165-3180 (2020).
35. V. Mizrahi, P. Huberts, Deoxy- and dideoxynucleotide discrimination and identification of critical 5′ nuclease domain residues of the DNA polymerase I from Mycobacterium tuberculosis. Nucleic Acids Res. 24, 4845-4852 (1996).
36. L. S. Beese, V. Derbyshire, T. A. Steitz, Structure of DNA OF DNA polymerase-I Klenow fragment bound to duplex DNA. Science 260, 352-355 (1993).