| 研究生: |
陳昭宏 Chen, Jhao-Hong |
|---|---|
| 論文名稱: |
一貫作業煉鋼廠之原物料堆逸散性粉塵研究 Fugitive Dust Emission from Storage Piles of an Integrated Steel Mill |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 220 |
| 中文關鍵詞: | 逸散性粉塵 、垂直梯度 、粒徑分布 、指紋資料 、排放係數 |
| 外文關鍵詞: | Fugitive dust, Vertical gradient, Size distribution, Source profile, Emission factor |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一貫作業煉鋼廠之原物料堆逸散性粉塵研究,目的包括:本研究所用之採樣方法與標準方法應用於逸散性粉塵採樣之比較、粒狀物垂直梯度與粒徑分布之量測、鄰近排放源之氣膠化學組成、原物料堆指紋資料建立與一貫作業煉鋼廠之原物料堆逸散性粉塵排放係數計算。線性回歸結果顯示本研究採樣方法所得之PM2.5與TSP之質量濃度分別須乘以0.28與1.87才能與標準方法之結果比較,判定係數R2分別為0.91與0.94。非標準方法與標準方法所得之PM2.5/TSP比值分別為0.188 ± 0.139與0.106 ± 0.050,非標準方法約為標準方法之1.86倍。本研究以光學微粒計數器量測距離地面1 – 27 m之粒狀物垂直梯度與粒徑分布,1 – 2 m之粒狀物質量濃度為53.82 ± 26.43 μg/m3。上風測站≥ 22 m與1 – 2 m處以及下風測站6 – 10 m處之微粒濃度較高,顯示原物料堆之逸散排放與擋風牆對逸散排放之防制效果。高濃度之微粒粒徑以≥ 10 μm為主。本研究於原物料堆置場採集周界大氣與原物料樣品,原物料樣品以≥ 2 mm之粒徑為主,化學組成以有機碳與元素碳為主;周界樣品化學組成以氯鹽、硝酸鹽、硫酸鹽、有機碳與元素碳為主。原物料樣品之化學組成分析結果可用於建立一貫作業煉鋼廠之原物料堆逸散性粉塵排放指紋資料。為判定對周界樣品貢獻之排放源化學追蹤劑,將各樣品之化學組成除以煤礦原物料樣品之化學組成,結果顯示原物料堆以外之代表性追蹤劑,PM2.5為銨鹽與硫酸鹽TSP則為銨鹽與氯鹽。本研究以質量平衡法計算一貫作業煉鋼廠之原物料堆逸散性粉塵排放係數,結果顯示PM2.5與TSP之排放係數範圍分別為-10.14至40.50 μg/m2s與-106.53至219.84 μg/m2s,TSP排放係數比PM2.5排放係數高出大約1個數量級。
The objectives of this research include: comparison of the measurement methods used in this study with standard methods for sampling fugitive dust; measuring the vertical gradient of particle size distribution; analysis of the chemical composition of ambient aerosols near emission sources, constructing the source profiles of aggregate materials, and calculating the emission factors of fugitive dust from storage piles of an integrated steel mill. The linear regression indicates that the nonstandard method for PM2.5 and TSP should be corrected with 0.28 and 1.87 with R2 being 0.94 and 0.91, respectively. The PM2.5/TSP ratio for samples from nonstandard methods is 0.188 ± 0.139, while that from standard methods is 0.106 ± 0.050, indicating that methods adopted in this study bias high by a factor of 1.86. Particles are monitored at 1 to 27 m above ground by optical particle counter. The particle concentrations are high at altitudes ≥ 22 m and 1 – 2 m at the upwind site and at altitudes 6 – 10 m at the downwind site, indicating the emissions from the storage piles and the effectiveness of windbreak wall for the control of emissions. The high concentrations are dominated by particles with diameter ≥ 10 μm. The ambient aerosols are sampled in the field while the aggregates are collected from storage piles for resuspension chamber experiment. Most of the aggregate is ≥ 2 mm. The dominant chemical species for aggregate samples are OC and EC, while those for ambient samples include Cl-, NO3-, SO42-, OC and EC. The chemical composition of aggregate materials can serve as source profiles. The results also indicate that, for both north and south wind cases, the tracers representing sources other than aggregate materials are NH4+ and SO42- for PM2.5, and those for TSP are NH4+ and Cl-. The emission factors are calculated based on the principle of mass balance. The overall ranges of PM2.5 and TSP emission factors are -10.14 to 40.50 μg/m2s and -106.53 to 219.84 μg/m2s. The EFs of TSP are higher than those of PM2.5 for around one order of magnitude.
Adamson, I. Y. R., H. Prieditis, and R. Vincent, “Pulmonary toxicity of an atmospheric particulate sample is due to the soluble fraction,” Toxicol. Appl. Pharmacol., 157, 1, 43-50, 1999.
Advantec MFS, Environmental Air Monitoring Product Guide, Advantec MFS Inc., USA.
Allen, A. G., E. Nemitz, J. P. Shi, R. M. Harrison, and J. C. Greenwood, “Size distributions of trace metals in atmospheric aerosols in the United Kingdom,” Atmos. Environ., 35, 27, 4581-4591, 2001.
Ashbaugh, L. L., O. F. Carvacho, M. S. Brown, J. C. Chow, J. G. Watson, and K. C. Magliano, “Soil sample collection and analysis for the Fugitive Dust Characterization Study,” Atmos. Environ., 37, 9-10, 1163-1173, 2003.
Asman, W. A. H., Atmospheric Behaviour of Ammonia and Ammonium, Doctoral Dissertation, 1987.
Axtell, K., and C. Cowherd, Improved Emission Factors for Fugitive Dust from Western Surface Coal Mining Sources. U.S. Environmental Protection Agency, USA, 1984.
Bachmann, J. D., “Will the circle be unbroken: A history of the U.S. National Ambient Air Quality Standards,” J. Air Waste Manage. Assoc., 57, 6, 652-697, 2007.
Badr, T., and J.-L. Harion, “Effect of aggregate storage piles configuration on dust emissions,” Atmos. Environ., 41, 2, 360-368, 2007.
Bagnold, R. A., “Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear,” P. Roy. Soc. Lond. A Mat., 225, 1160, 49-63, 1954.
Bagnold, R. A., The Physics of Blown Sand and Desert Dunes. Dover Publications, USA, 2005.
Billman Stunder, B. J., and S. P. S. Arya, “Windbreak effectiveness for storage pile fugitive dust control: a wind tunnel study,” JAPCA., 38, 2, 135-143, 1988.
Blanco, H., R. Lal, Principles of Soil Conservation and Management, Springer, USA, 2008.
Bohn, R., T. Cuscino, and C. Cowherd, Fugitive Emissions from Integrated Iron and Steel Plants. U.S. Environmental Protection Agency, USA, 1978.
Boon, K. F., L. Kiefert, and G. H. McTainsh, “Organic matter content of rural dust in Australia,” Atmos. Environ., 32, 16, 2817-2823 1998.
Cao, J. J., F. Wu, J. C. Chow, S. C. Lee, Y. Li, S. W. Chen, Z. S. An, K. K. Fung, J. G. Watson, C. S. Zhu, and S. X. Liu, “Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China,” Atmos. Chem. Phys., 5, 11, 3127-3137, 2005.
Cao, J. J., J. C. Chow, J. G. Watson, F. Wu, Y. M. Han, Z. D. Jin, Z. X. Shen, and Z. S. An, “Size-differentiated source profiles for fugitive dust in the Chinese Loess Plateau,” Atmos. Environ., 42, 10, 2261-2275, 2008.
Carter, J. D., A. J. Ghio, J. M. Samet, and R. B. Devlin, “Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent,” Toxicol. Appl. Pharmacol., 146, 2, 180-188, 1997.
Chang, C.-T., “Assessment of influential range and characteristics of fugitive dust in limestone extraction processes,” J. Air Waste Manage. Assoc., 54, 2, 141-148, 2004.
Charlson, R. J., A. H. Vanderpol, D. S. Covert, A. P. Waggoner, and N. C. Ahlquist, “H2SO4/(NH4)2SO4 background aerosol: Optical detection in the St. Louis region,” Atmos. Environ., 8, 12, 1257-1267, 1974.
Charlson, R. J., A. H. Vanderpol, D. S. Covert, A. P. Waggoner, and N. C. Ahlquist, “Sulfuric acid-ammonium sulfate aerosol: Optical detection in the St. Louis region,” Science, 184, 4133, 156-158, 1974.
Chepil, W. S., “Dynamics of wind erosion: I. Nature of movement of soil by wind,” Soil Sci., 60, 4, 305-320, 1945.
Chepil, W. S., “Dynamics of wind erosion: II. Initiation of soil movement,” Soil Sci., 60, 5, 397-411, 1945.
Chepil, W. S., “Dynamics of wind erosion: III. The transport capacity of the wind,” Soil Sci., 60, 6, 475-480, 1945.
Chepil, W. S., “Dynamics of wind erosion: IV. The translocating and abrasive action of the wind,” Soil Sci., 61, 2, 167-178, 1946.
Chepil, W. S., “Dynamics of wind erosion: V. Cumulative intensity of soil drifting across eroding fields,” Soil Sci., 61, 3, 257-263, 1946.
Chepil, W. S., “Dynamics of wind erosion: VI. Sorting of soil material by the wind,” Soil Sci., 61, 4, 331-340, 1946.
Chow, J. C., J. G. Watson, J. E. Houck, L. C. Pritchett, C. F. Rogers, C. A. Frazier, R. T. Egami, and B. M. Ball, “A laboratory resuspension chamber to measure fugitive dust size distributions and chemical compositions,” Atmos. Environ., 28, 21, 3463-3481, 1994.
Chow, J. C., “Measurement methods to determine compliance with ambient air quality standards for suspended particles,” J. Air Waste Manage. Assoc., 45, 5, 320-382, 1995.
Chow, J. C., J. G. Watson, H. J. Feldman, J. Nolan, B. R. Wallerstein, and J. D. Bachmann, “Will the circle be unbroken: A history of the U.S. National Ambient Air Quality Standards,” J. Air Waste Manage. Assoc., 57, 10, 1151-1163, 2007.
Chow, J. C., and J. G. Watson, “New directions: Beyond compliance air quality measurements,” Atmos. Environ., 42, 20, 5166-5168, 2008.
Copeland, N. S., B. S. Sharratt, J. Q. Wu, R. B. Foltz, J. H. Dooley, “A wood-strand material for wind erosion control: effects on total sediment loss, PM10 vertical flux, and PM10 loss,” J. Environ. Qual., 38, 1, 139-148, 2009.
Cowherd, C., K. Axetell, C. H. Guenther, and G. A. Jutze, Development of Emission Factors for Fugitive Dust Sources. U.S. Environmental Protection Agency, USA, 1974.
Cowherd, C., and Cuscino, T., Fugitive Emissions Evaluation. Midwest Research Institute, USA, 1977.
Cowherd, C., C. M. Maxwell, and D. W. Nelson, Quantification of Dust Entrainment from Paved Roadways. Midwest Research Institute, USA, 1977.
Cowherd, C., R. Bohn, and Cuscino, T., Iron and Steel Plant Open Source Fugitive Emission Evaluation. U.S. Environmental Protection Agency, USA, 1979.
Cowherd, C., “Control of windblown dust from storage piles,” Environ. Int., 6, 1-6, 307-311, 1981.
Cowherd, C., G. E. Muleski, and J. S. Kinsey, Control of Open Fugitive Dust Sources. U.S. Environmental Protection Agency, USA, 1988.
Cowherd, C., and J. Donaldson, Analysis of the Fine Fraction of Particulate Matter in Fugitive Dust. Midwest Research Institute, USA, 2005.
Cowherd, C., Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors. Midwest Research Institute, USA, 2006.
Cowherd, C., J. Donaldson, R. Hegarty, and D. Ono, Proposed Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors. Midwest Research Institute, USA, 2010.
Cuscino, T., Particulate Emission Factors Applicable to the Iron and Steel Industry. Midwest Research Institute, USA, 1979.
Cuscino, T., Taconite Mining Fugitive Emissions Study. Midwest Research Institute, USA, 1979.
Das, B. M., and K. Sobhan, Principles of Geotechnical Engineering, 8th Edition, Cengage Learning, USA, 2014.
Dentener, F. J., G. R. Carmichael, and Y. Zhang, “The role of mineral aerosol as a reactive surface in the global troposphere,” J. Geophys. Res., 101, D17, 22869-22889, 1996.
DSC, Layout of Factory Area, Dragon Steel Corporation, 2010.
Du, K., M. J. Rood, E. J. Welton, R. M. Varma, R. A. Hashmonay, B. J. Kim, and M. R. Kemme, “Optical remote sensing to quantify fugitive particulate mass emissions from stationary short-term and mobile continuous sources: Part I. method and examples,” Environ. Sci. Technol., 45, 2, 658-665, 2011.
Du, K., W. Yuen, W. Wang, M. J. Rood, R. M. Varma, R. A. Hashmonay, B. J. Kim, and M. R. Kemme, “Optical remote sensing to quantify fugitive particulate mass emissions from stationary short-term and mobile continuous sources: Part II. field applications,” Environ. Sci. Technol., 45, 2, 666-672, 2011.
Dyck, R. I. J., and J. J. Stukel, “Fugitive dust emissions from trucks on unpaved roads,” Environ. Sci. Technol., 10, 10, 1046-1048, 1976.
Engelbrecht, J. P., L. Swanepoel, J. C. Chow, J. G. Watson, and R. T. Egami, “PM2.5 and PM10 concentrations from the Qalabotjha low-smoke fuels macro-scale experiment in South Africa,” Environ. Monit. Assess., 69, 1, 1-15, 2001.
Erisman, J.-W., A. W. M. Vermetten, W. A. H. Asman, A., Waijers-Ijpelaan, and J. Slanina, “Vertical distribution of gases and aerosols: The behaviour of ammonia and related components in the lower atmosphere,” Atmos. Environ., 22, 6, 1153-1160, 1988.
Etyemezian, V., S. Ahonen, D. Nikolic, J. Gillies, H. Kuhns, D. Gillette, and J. Veranth, “Deposition and removal of fugitive dust in the arid southwestern United States: measurements and model results,” J. Air Waste Manage., 54, 9, 1099-1111, 2004.
Feng, G., B. Sharratt, and L. Wendling, “Fine particle emission potential from loam soils in a semiarid region,” Soil Sci. Soc. Am. J., 75, 6, 2262-2270, 2011.
Finlayson-Pitts, B. J., and J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. Academic Press, USA, 2000.
Fletcher, B., “The erosion of dust by an airflow,” J. Phys. D Appl. Phys., 9, 6, 913-924, 1976.
Fletcher, B., “The incipient motion of granular materials,” J. Phys. D Appl. Phys., 9, 17, 2471-2478, 1976.
Gaffney, P., Updating the ARB PM2.5 Size Speciation Profiles for Fugitive Dust Sources, California Air Resources Board, USA, 2006.
GAST, Laboratory Oilless Diaphragm Vacuum Pump & Compressor, Operation & Maintenance Manual, Gast Manufacturing Inc., USA, 2002.
GAST, Diaphragm Compressors and Vacuum Pumps, Gast Manufacturing Inc., USA, 2012.
Ghose, M. K., “Emission factors for the quantification of dust in Indian coal mines,” J. Sci. Ind. Res. India, 63, 763-768, 2004.
Gillette, D. A., J. Adams, A. Endo, D. Smith, and R. Kihl, “Threshold velocities for input of soil particles into the air by desert soils,” J. Geophys. Res.-Oceans, 85, C10, 5621-5630, 1980.
Gillies, J. A., J. G. Watson, C. F. Rogers, D. DuBois, J. C. Chow, R. Langston, and J. Sweet, “Long-term efficiencies of dust suppressants to reduce PM10 emissions from unpaved roads,” J. Air Waste Manage. Assoc., 49, 1, 3-16, 1999.
Gillies, J. A., V. Etyemezian, H. Kuhns, D. Nikolic, and D. A. Gillette, “Effect of vehicle characteristics on unpaved road dust emissions,” Atmos. Environ., 39, 13, 2341-2347, 2005.
GRIMM, Portable Laser Aerosol Spectrometer and Dust Monitor Model 1.108/1.109, GRIMM Aerosol Technik Ainring GmbH & Co. KG, Germany.
Grimm, H., and D. J. Eatough, “Aerosol measurement: The use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction,” J. Air Waste Manage. Assoc., 59, 1, 101-107, 2009.
Hering, S. V., and S. K. Friedlander, “Origins of aerosol sulfur size distributions in the Los Angeles basin,” Atmos. Environ., 16, 11, 2647-2656, 1982.
Hinds, W. C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd Edition. John Wiley & Sons, USA, 1999.
Holmén, B. A., W. E. Eichinger, and R. G. Flocchini, “Application of Elastic Lidar to PM10 Emissions from Agricultural Nonpoint Sources,” Environ. Sci. Technol., 32, 20, 3068-3076, 1998.
Holmén, B. A., T. A. James, L. L. Ashbaugh, and R. G. Flocchini, “Lidar-assisted measurement of PM10 emissions from agricultural tilling in California's San Joaquin Valley – Part I: lidar,” Atmos. Environ., 35, 19, 3251-3264, 2001.
Holmén, B. A., T. A. James, L. L. Ashbaugh, and R. G. Flocchini, “Lidar-assisted measurement of PM10 emissions from agricultural tilling in California's San Joaquin Valley – Part II: emission factors,” Atmos. Environ., 35, 19, 3265-3277, 2001.
Hsu, Y.-M., X. Wang, J. C. Chow, J. G. Watson, and K. E. Percy, “Collocated comparisons of continuous and filter-based PM2.5 measurements at Fort McMurray, Alberta, Canada,” J. Air Waste Manage. Assoc., 66, 3, 329-339, 2016.
Hubbard, J. A., J. S. Haglund, and O. A. Ezekoye, “Simulation of the evolution of particle size distributions containing coarse particulate in the atmospheric surface layer with a simple convection-diffusion-sedimentation model,” Atmos. Environ., 43, 29, 4435-4443, 2009.
Jeffery, J., and J. Vay, Iron and Steel Industry Particulate Emissions: Source Category Report. U.S. Environmental Protection Agency, USA, 1987.
John, W., S. M. Wall, J. L. Ondo, and W. Winklmayr, “Modes in the size distributions of atmospheric inorganic aerosol,” Atmos. Environ., 24A, 9, 2349-2359, 1990.
Jutze, G. A., and K. Axetell, Investigation of Fugitive Dust, Volume I – Sources, Emissions, and Control. U.S. Environmental Protection Agency, USA, 1974.
Jutze, G. A., and K. Axetell, Investigation of Fugitive Dust, Volume II – Control Strategy and Regulatory Approach. U.S. Environmental Protection Agency, USA, 1974.
Jutze, G. A., J. M. Zoller, T. A. Janszen, R. S. Amick, C. E. Zimmer, and R. W. Gerstle, Technical Guidance for Control of Industrial Process Fugitive Particulate Emissions. U.S. Environmental Protection Agency, USA, 1977.
Kerminen, V.‐M., R. E. Hillamo, T. Mäkelä, J.‐L. Jaffrezo, and W. Maenhaut, “The physicochemical structure of the Greenland summer aerosol and its relation to atmospheric processes,” J. Geophys. Res., 103, D5, 5661-5670, 1998.
Kerminen, V.-M., K. Teinilä, R. Hillamo, and T. Pakkanen, “Substitution of chloride in sea-salt particles by inorganic and organic anions,” J. Aerosol Sci., 29, 8, 929-942, 1998.
Kerminen, V.-M., K. Teinilä, and R. Hillamo, “Chemistry of sea-salt particles in the summer Antarctic atmosphere,” Atmos. Environ., 34, 17, 2817-2825, 2000.
Kind, R. J., “Mechanics of aeolian transport of snow and sand,” J. Wind Eng. Ind. Aerod., 36, 2, 855-866, 1990.
Kulkarni, P., P. A. Baron, and K. Willeke, Aerosol Measurement: Principles, Techniques, and Applications, 3rd Edition. John Wiley & Sons, USA, 2011.
Lindberg, S. E., A. L. Page, and S. A. Norton, Acidic Precipitation, Volume 3: Sources, Deposition, and Canopy Interactions, Springer-Verlag, USA, 1990.
Majestic, B. J., J. J. Schauer, M. M. Shafer, P. M. Fine, M. Singh, and C. Sioutas, “Trace metal analysis of atmospheric particulate matter: A comparison of personal and ambient samplers,” J. Environ. Eng. Sci., 7, 4, 289-298, 2008.
McMurry, P. H., and M. R. Stolzenburg, “On the sensitivity of particle size to relative humidity for Los Angeles aerosols,” Atmos. Environ., 23, 2, 497-507, 1989.
McMurry, P. H., “A review of atmospheric aerosol measurements,” Atmos. Environ., 34, 12-14, 1959-1999, 2000.
Meng, Z., and J. H. Seinfeld, “On the source of the submicrometer droplet mode of urban and regional aerosols,’’ Aerosol Sci. Technol., 20, 3, 253-265, 1994.
Mesa Labs, BGI PQ200 Air Sampler User Manual, Mesa Laboratories Inc., USA.
METTLER TOLEDO, Excellence Micro Balances, Mettler-Toledo International Inc., Switzerland, 2008.
MRI, An AP-42 Update Of Open Source Fugitive Dust Emissions. Midwest Research Institute, USA, 1983.
MRI, Estimating Particulate Matter Emissions from Construction Operations. Midwest Research Institute, USA, 1999.
Muleski, G. E., C. Cowherd, and P. Englehart, Update of Fugitive Dust Emission Factors in AP-42 Section 11.2. Midwest Research Institute, USA, 1987.
Muleski, G. E., C. Cowherd, and J. S. Kinsey, “Particulate emissions from construction activities,” J. Air Waste Manage., 55, 6, 772-783, 2005.
Nicholson, K. W., “A review of particle resuspension,” Atmos. Environ., 22, 12, 2639-2651, 1988.
Orlemann, J. A., and G. A. Jutze, Fugitive Dust Control Technology. Noyes Data Corporation, USA, 1983.
Pace, T. G., Examination of the Multiplier Used to Estimate PM2.5 Fugitive Dust Emissions from PM10. U.S. Environmental Protection Agency, USA, 2005.
Pacyna, J. M., and B. Ottar, Control and Fate of Atmospheric Trace Metals, Kluwer Academic Publishers, The Netherlands, 1989.
Paez-Rubio, T., X. Hua, J. Anderson, J. Reccia, “Particulate matter composition and emission rates from the disk incorporation of class B biosolids into soil,” Atmos. Environ., 40, 36, 7034-7045, 2006.
Pall, Pallflex Filters, Product Data, Pall Corporation, USA, 2002.
Pall, 37 mm Air Monitoring Cassettes, Pall Corporation, USA, 2014.
Pelt, R. S. V., T. M. Zobeck, M. C. Baddock, and J. J. Cox, “Design, construction, and calibration of a portable boundary layer wind tunnel for field use,” T. ASABE., 53, 5, 1413-1422, 2010.
Petroff, A., A. Mailliat, M. Amielh, and F. Anselmet, “Aerosol dry deposition on vegetative canopies. Part I: Review of present knowledge,” Atmos. Environ., 42, 16, 3625-3653, 2008.
Petroff, A., A. Mailliat, M. Amielh, and F. Anselmet, “Aerosol dry deposition on vegetative canopies. Part II: A new modelling approach and applications,” Atmos. Environ., 42, 16, 3654-3683, 2008.
Pope, C. A., III, and D. W. Dockery, “Health effects of fine particulate air pollution: Lines that connect,” J. Air Waste Manage. Assoc., 56, 6, 709-742, 2006.
Pruppacher, H. R., Semonin R. G., and Slinn, W. G. N., Precipitation Scavenging, Dry Deposition, and Resuspension, Volume 2 Dry Deposition and Resuspension, Elsevier, USA, 1983.
Reist, P. C., Aerosol Science and Technology, 2nd Edition. McGraw-Hill, Singapore, 1993.
Ruzer, L. S., and N. H. Harley, Aerosols Handbook: Measurement, Dosimetry, and Health Effects, 2nd Edition. CRC Press, USA, 2013.
Sanderson, R. S., C. M. Neuman, and J. W. Boulton, “Windblown fugitive dust emissions from smelter slag,” Aeolian Res., 13, 19-29, 2014.
Saylor, R. D., “An estimate of the potential significance of heterogeneous loss to aerosols as an additional sink for hydroperoxy radicals in the troposphere,” Atmos. Environ., 31, 21, 3653-3658, 1997.
Saxton, K., D. Chandler, L. Stetler, B. Lamb, C. Claiborn, and B.-H. Lee, “Wind erosion and fugitive dust fluxes on agricultural lands in the Pacific northwest,” T. ASABE., 43, 3, 631-640, 2000.
Seinfeld, J. H., and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd Edition. John Wiley & Sons, USA, 2016.
Seo, I.-H., I.-B. Lee, M.-H. Shin, G.-Y. Lee, H.-S. Hwang, S.-W. Hong, J. P. Bitog, J.-I. Yoo, K.-S. Kwon, Y.-H. Kim, and T. Bartzanas, “Numerical prediction of fugitive dust dispersion on reclaimed land in Korea,” T. ASABE., 53, 3, 891-901, 2010.
Singh, P., B. Sharratt, and W. F. Shillinger, “Wind erosion and PM10 emission affected by tillage systems in the world's driest rainfed wheat region,” Soil Till. Res., 124, 219-225, 2012.
Solomon, P. A., and C. Sioutas, “Continuous and semicontinuous monitoring techniques for particulate matter mass and chemical components: A synthesis of findings from EPA’s particulate matter supersites program and related studies,” J. Air Waste Manage. Assoc., 58, 2, 164-195, 2008.
Syu, J.-Y., Y.-C. Cheng, Y.-Y. Kao, C.-S. Liang, Y.-L. Yan, C.-Y. Lai, C.-T. Chang, C.-C. Chen, C.-Y. Young, Y.-L. Wu, and W.-Y. Lin, “The horizontal and vertical characteristics of Aeolian dust from riverbed,” Aerosol Air Qual. Res., 16, 12, 3026-3036, 2016.
Tang, I. N., “Phase transformation and growth of aerosol particles composed of mixed salts,” J. Aerosol Sci., 7, 5, 361-371, 1976.
Tang, I. N., H. R. Munkelwitz, and J. G. Davis, “Aerosol growth studies—II. Preparation and growth measurements of monodisperse salt aerosols,” J. Aerosol Sci., 8, 3, 149-159, 1977.
Tang, I. N., and H. R. Munkelwitz, “Aerosol growth studies—III. Ammonium bisulfate aerosols in a moist atmosphere,” J. Aerosol Sci., 8, 5, 321-330, 1977.
Tang, I. N., H. R. Munkelwitz, and J. G. Davis, “Aerosol growth studies—IV. Phase transformation of mixed salt aerosols in a moist atmosphere,” J. Aerosol Sci., 9, 6, 505-511, 1978.
Tang, I. N., “Deliquescence properties and particle size change of hygroscopic aerosols,” Symposium on Biological Studies of Environmental Pollutants: Aerosol Generation and Exposure Facilities, Honolulu, Hawaii, April 1-6, 1979.
Tang, I. N., and H. R. Munkelwitz, “Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols,” Atmos. Environ., 27A, 4, 467-473, 1993.
Tang, I. N., and H. R. Munkelwitz, “Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance,” J. Geophys. Res., 99, D9, 18801-18808, 1994.
Tang, I. N., and H. R. Munkelwitz, “Aerosol phase transformation and growth in the atmosphere,” J. Appl. Meteorol., 33, 7, 791-796, 1994.
Tang, I. N., K. H. Fung, D. G. Imre, and H. R. Munkelwitz, “Phase transformation and metastability of hygroscopic microparticles,” Aerosol Sci. Technol., 23, 3, 443-453, 1995.
Thermolyne, Type FB1300 & FB1400 Furnaces, Operation and Repair Manual and Parts List Series 1049 & 1050, Barnstead Thermolyne Corporation, USA.
TISCH, Operations Manual, TE-5000 Total Suspended Particulate High Volume Air Sampler, Tisch Environmental Inc., USA.
Toraño, J., S. Torno, I. Diego, M. Menendez, and M. Gent, “Dust emission calculations in open storage piles protected by means of barriers, CFD and experimental tests,” Environ. Fluid Mech., 9, 5, 493-507, 2009.
Trzepla-Nabaglo, K., R. Shiraki, and B. A. Holmén, “Lidar characterization of crystalline silica generation and transport from a sand and gravel plant,” J. Hazard. Mater., 132, 1, 14-25, 2006.
Tseng, C.-Y., S.-L. Lin, J. K. Mwangi, C.-S. Yuan, and Y.-L. Wu, “Characteristics of atmospheric PM2.5 in a densely populated city with multi-emission sources,” Aerosol Air Qual. Res., 16, 9, 2145-2158, 2016.
URG, 16.7 Lpm, 2.5 μm Cyclone URG-2000-30EH, URG, USA.
USEPA, Compilation of Air Pollutant Emission Factors, Volume I: Stationary Point and Area Sources, 5th Edition. U.S. Environmental Protection Agency, USA, 1995.
USEPA, List of designated reference and equivalent methods, U.S. Environmental Protection Agency, USA, 2018.
Vincent, J. H., Aerosol Sampling: Science, Standards, Instrumentation and Applications. John Wiley & Sons, UK, 2007.
Wall, S. M., W. John, and J. L. Ondo, “Measurement of aerosol size distributions for nitrate and major ionic species,” Atmos. Environ., 22, 8, 1649-1656, 1988.
Wang, X., J. C. Chow, S. D. Kohl, K. E. Percy, A. H. Legge, and J. G. Watson, “Characterization of PM2.5 and PM10 fugitive dust source profiles in the Athabasca Oil Sands Region,” J. Air Waste Manage. Assoc., 65, 12, 1421-1433, 2015.
Watson, J. G, “Visibility: Science and regulation,” J. Air Waste Manage. Assoc., 52, 6, 628-713, 2002.
Watson, J. G., L.-W. A. Chen, J. C. Chow, D. H. Lowenthal, and P. Doraiswamy, “Source apportionment: Findings from the U.S. Supersite Program,” J. Air Waste Manage. Assoc., 58, 2, 265-288, 2008.
Watson, J. G., J. C. Chow, L. Chen, X. Wang, T. M. Merrifield, P. M. Fine, and K. Barker, “Measurement system evaluation for upwind/downwind sampling of fugitive dust emissions,” Aerosol Air Qual. Res., 11, 4, 331-350, 2011.
Wilson, W. E., J. C. Chow, C. S. Claiborn, W. Fusheng, J. P. Engelbrecht, and J. G. Watson, “Monitoring of particulate matter outdoors,” Chemosphere, 49, 9, 1009-1043, 2002.
Wu, F., J. C. Chow, Z. An, J. G. Watson, and J. Cao, “Size-differentiated chemical characteristics of Asian paleo dust: Records from aeolian deposition on Chinese Loess Plateau,” J. Air Waste Manage. Assoc., 61, 2, 180-189, 2011.
Xuan, J., and A. Robins, “The effects of turbulence and complex terrain on dust emissions and depositions from coal stockpiles,” Atmos. Environ., 28, 11, 1951-1960, 1994.
Zhang, Y., C. Seigneur, J. H. Seinfeld, M. Jacobson, S. L. Clegg, and F. S. Binkowski, “A comparative review of inorganic aerosol thermodynamic equilibrium modules: similarities, differences, and their likely causes,” Atmos. Environ., 34, 1, 117-137, 2000.
Zhu, D., J. A. Gillies, V. Etymezian, G. Nikolich, and W. J. Shaw, “Evaluation of the surface roughness effect on suspended particle deposition near unpaved roads,” Atmos. Environ., 122, 541-551, 2015.
Zobeck, T. M., and R. S. V. Pelt, “Wind-induced dust generation and transport mechanics on a bare agricultural field,” J. Hazard. Mater., 132, 1, 26-38, 2006.
校內:2023-08-25公開