簡易檢索 / 詳目顯示

研究生: 姚詩育
Yao, Shih-Yu
論文名稱: 基於小波描述子之影像重複區域之竄改偵測系統
An Image Duplication Detection System Based on Wavelet Descriptor
指導教授: 王明習
Wang, Ming-Shi
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 77
中文關鍵詞: 竄改偵測對數極座標轉換描述子
外文關鍵詞: Tampered detection, Log-polar transform, Descriptor
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著資訊科技之演進,數位產品的普及,使得數位影像的取得更為容易,其拍攝內容經常被廣泛應用在新聞報導、犯罪調查、科學研究等,因此數位影像之安全性,逐漸變成一個相當受到重視的議題。在本論文提出一個影像竄改偵測系統,對於複製-黏貼(copy-paste)竄改影像中複製區域經過旋轉、縮放處理後再黏貼之區域能有效的進行檢測,本論文所提出之方法是,首先將影像做區塊重疊分割,接著對分割的區塊進行極坐標轉換,之後沿著極座標的 軸之像素做累加運算,會得到一維描述子,再將此一維描述子使用Haar小波函數將一維描述子進行三階的一維離散小波轉換,取出其低頻部份的前面3個係數作為特徵向量,此特徵向量稱之為一維小波描述子,它具有旋轉、縮放、平移之不變性,並利用區塊的色彩和亮度等資訊作為區塊的特徵值,其維度為4,最後可得到一個維度為7維的特徵向量來表示一個區塊,如此可縮減區塊間的特徵向量排序及相似度匹配計算時間,進而提升系統整體效能。本文提出方法與相關參考文獻[19]做比較測試,測試影像資料採用Caltech-256 dataset資料庫與部分影像從網路上取得,從實驗結果中顯示本文所提出之方法在紋理複雜與平滑之竄改影像檢測效果優於相關參考文獻[19]。

    With the evolution of information technology, the source of digital images is easily obtained from such as digital cameras, digital video cameras or surveillance system. These digital images are widely used in news reports, criminal investigations, and scientific research. How to ensure that the digital images are not tampered? In the recent years, the subject called digital image forensics security has gradually become a considerable issue. In this thesis, a passive detection method for detection copy-paste tampering of the digital image was proposed. The tampered portion can be detected even under the operations of rotation or/and scaling. Firstly, the image is divided into overlapped blocks of pixels. To achieve rotation invariant features, the overlapping blocks of pixels are mapped to log-polar coordinates, and then calculated the sum of pixel values along the angle theta axis, to produce a one-dimensional descriptor. Then, the Haar wavelet function is applied to the obtained one-dimensional(1-D) descriptor to obtain its 3rd-level wavelet transform. The first 3 coefficients of the low band frequency called 1-D wavelet descriptor are kept as the features of the block. This descriptor is invariant for rotating, scaling, and translating of the block. The color and intensity of the block are also adopted as the features. The feature vector of a block is consisted of these 7 features. All of these feature vectors are lexicographically sorted for reducing the searching time while finding the similar regions. For testing the performance of the proposed method and comparing with the similar research [19], some of the test data was adopted from Caltech-256 dataset and some are collected from Internet. It is shown that the proposed method is performed better than [19] for both of complex and smooth images.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 v 表目錄 vi 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 8 第二章 相關研究探討 10 2.1 主動式數位鑑識技術 10 2.1.1 數位簽章 11 2.1.2 數位浮水印 12 2.2 被動式數位鑑識技術 18 第三章 影像竄改偵測系統 34 3.1 前處理 35 3.2 小波描述子 37 3.3 區塊特徵向量提取 39 3.4 區塊相似度匹配 42 3.5 竄改區域定位 45 第四章 實驗結果與討論 52 4.1 實驗環境 52 4.2 實驗結果 54 4.2.1 測試數據說明 54 4.2.2 第一類型測試 55 4.2.3 第二類型測試 58 4.2.4 第三類型測試 64 4.2.5 第四類型測試 68 第五章 結論與未來研究方向 73 5.1 結論 73 5.2 未來研究方向 74 參考文獻 76

    [1] Alin Constantin Popescu and Hany Farid, "Exposing digital forgeries by detecting traces of resampling", IEEE Transactions on Signal Processing, vol.53, no.2, pp.758-767, 2005.
    [2] M. Schneider and S.F. Chang, "A Robust Content Based Digital Signature for Image Authentication", IEEE International conference on image processing, vol. 3, pp.227-230,1996.
    [3] Maria Paula Queluz, "Authentication of digital image: generic models and a new con-tribution", Signal Processing Image Communication, vol.16, Issue5, pp. 401-415, tan.2001.
    [4] C. Kailasanathan and R. Safavi Naini, "Image authentication surviving accept- able modifications using statistical measures and k-mean segmentation", IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, June.2001.
    [5] Der-Chyuan Lou, Jiang-Lung Liu, "Fault resilient and compression tolerant digital signature for image authentication", IEEE Transactions on Consumer Electronics, vol. 46,Issue 1, pp.31-39, Feb.2000.
    [6] Ching-Yung Lin and Shih-Fu Chang, "A Robust Image Authentication Method Sur-viv¬ing JPEG loss Compression", SPIE Storage and Retrieval of Image/Video Data-bases, Jan.1998.
    [7] Ching-Tung Lin and Shih-Fu Chang, "Generating Robust Digital Signature for Im-age/Video Authentication", Multimedia and Security Workshop at ACM Multimedia, Bristol, UK, Sep.1998.
    [8] Ching-Tung Lin and Shih-Fu Chang, "A robust image authentication method distin-guish¬ing JPEG compression from malicious manipulation", IEEE Transaction on Circuits and Systems for Video Technology, vol.11, Issue2, pp.153-168,Feb.2001.
    [9] Sergio Bravo-Solorio, Asoke K. Nandi, "Secure fragile watermarking method for im-age authentication with improved tampering localisation and self-recovery capabili-ties", Signal Processing, vol.91, Issue 4, pp.728-739, April.2011.
    [10] Jessica Fridrich, David Soukal, and Jan Lukas, "Detection of copy-move forgery in digital images", in Proc. Digital Forensic Research Workshop, Cleveland, OH, USA, 5-8 Aug.2003.
    [11] Alin Constantin Popescu and Hany Farid, "Exposing digital forgeries by detecting duplicated image regions", Technical Report, TR2004-515, Dartmouth College, Com-puter Science, 2004.

    [12] Weiqi Luo, Jiwu Huang and Guoping Qiu, "Robust Detection of Region-Duplication Forgery in Digital Image", the 18th International Conference on Pattern Recogni¬tion, Hong Kong, 2006.
    [13] Guohui Li, Qiong Wu, Dan Tu and Shaojie Sun, "A Sorted Neighborhood Approach for Detecting Duplicated Regions in Image Forgeries Based on DWT and SVD", Proceedings of IEEE International Conference on Multimedia and Expo, Beijing China, pp.1750-1753, July 2-5.2007.
    [14] Yanping Huang, Wei Lu ,Wei Sun and Dongyang Long, "Improve DCT-based detec-tion of copy-move forgery in image", Forensic Science International, vol.206, Is¬sues 1-3, pp.178-184, 20 March 2011.
    [15] Guangjie Liu, Junwen Wang, Shiguo Lian and Zhiquan Wang, "A passive image au-thenti¬cation scheme for detecting region-duplication forgery with rotation", Journal of Network and Computer Applications, 2010.
    [16] M-K. Hu, "Visual pattern recognition by moment invariants", Information Theory, IEEE Transactions on, vol.8, no.2, pp.179-187, 1962.
    [17] Babak Mahdian and Stanislav Saic, "Detection of copy-move forgery using a method based on blur moment invariants", Forensic Science International, vol.171, Issues 2-3, pp.180-189, 13 September .2007.
    [18] S. Bayram, H. T. Sencar, and N. Memon, "An Efficient and Robust Method For De-tect¬ing Copy-Move Forgery", IEEE International Conference on Acoustics, Speech and Signal Processing, pp.1053–1056, 2009.
    [19] Sergio Bravo-Solorio, Asoke K. Nandi, "Automated detection and localisation of du-pli¬cated regions affected by reflection, rotation and scaling in image forensics", Sig¬nal Processing, vol.91, Issue8, pp.1759-1770, August 2011.
    [20] Vincent Christlein, Christian Riess, "On rotation invariance in copy-move forgery de-tection", IEEE International Work¬shop on Information Forensics and Security, 2010.
    [21] G. Griffin, A. Holub, P. Perona, "Caltech-256 object category dataset, Technical Re-port 7694, California Institute of Technology", URL left angle brack¬et http://authors.library.caltech.edu/7694right-pointing angle bracket, 2007.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE