簡易檢索 / 詳目顯示

研究生: 林瑞明
LIN, RAY-MING
論文名稱: 氮化鋁陶瓷材料之微波燒結與傳統燒結研究
The Study of AlN Ceramic by Using Microwave Sintering and Traditional Sintering
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 96
中文關鍵詞: 自我燃燒合成法氮化鋁微波燒結傳統燒結
外文關鍵詞: Sintering, Microwave, SHS, AlN
相關次數: 點閱:58下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係利用微波頻率2.45GHz,最大功率為3kW之單模腔微波燒結爐進行高熱傳氮化鋁陶瓷燒結研究,針對自我燃燒合成法(SHS)製作之氮化鋁粉體及微波快速加熱的優點,探討承載坩堝大小對微波燒結之影響,以及不同燒結助劑添加量對氮化鋁燒結體各種性質之影響,如收縮行為,二次相組成及分布,微結構,熱傳導,介電性質等。研究發現以較大之承載坩堝進行微波燒結具有較好之收縮率,而適當之助劑添加量可幫助氮化鋁燒結緻密,但過量之助劑會導致熱傳導值降低。本實驗亦發現添加微量的碳可減少晶界中二次相的含量,並提高熱傳導值。為了比較微波燒結與傳統燒結之差異,本研究以石墨熱壓爐在1850℃下,持溫2.5hr進行燒結,並與微波燒結作比較。

    The single-mode microwave furnace with 2.45GHz microwave frequency and 3kW power was used to sinter high thermal conductivity AlN ceramics. The effects of crucible diameter and amount of additives on densification behavior, phase composition, phase distribution, microstructure, thermal conductivity, and dielectric properties were studied by using SHS-produced AlN powder with microwave sintering. The results indicate that the use of crucible with larger diameter have better shrinkage. Appropriate amount of sintering aids was used to increase thermal conductivity, however, the thermal conductivity of AlN decreases while excess aids exists. A small amount of Cabon addition can further increase thermal conductivity by decreasing the volume of secondary phase. In order to investigate the differences between microwave sintering and traditional sintering. AlN was sintered at 1850℃ for 2.5hr in hot-pressed furnace.

    摘要 ……………………………………………………………….Ⅰ Abstract ……………………………………………………………Ⅱ 誌謝 ……………………………………………………………….Ⅲ 總目錄 …………………………………………………………….Ⅵ 表目錄 …………………………………………………………….Ⅶ 圖目錄 …………………………………………………………….Ⅷ 第一章 緒論 1.1 氮化鋁基板之簡介 ……………………………………. 1 1.2 SHS簡介 ………………………………………………. .2 1.3 氮化鋁的合成 …………………………………………. 7 1.4前人研究 ….…………………………...……………….. 9 1.5研究動機 ……………………………………………..… 10 第二章 理論基礎 2.1 微波加熱概論 ……………………………………….… 12 2.1.1 何謂微波 ……………………………………….. 12 2.1.2 微波爐的組成 ………………………………….. 13 2.1.3 微波加熱原理 ………………………………….. 13 2.1.4 微波加熱與傳統加熱的區別 ………………..… 14 2.1.5 微波加熱的特點 ……………………………….. 15 2.2 氮化鋁的特性 ……………………………………….… 16 2.3 熱傳導機構 …………………………………………..... 16 2.4 液相燒結 ……………………………………….…….... 19 2.5 液相燒結助劑選擇 …………………………………….. 21 第三章 實驗裝置和藥品 3.1 粉碎研磨裝置 …………………………………………. 25 3.2燒結裝置 …………………….…………………………. 25 3.3其他設備 …………………….…………………………. 26 3.4 藥品和氣體 ……………………………………………. 27 第四章 實驗方法 4.1氮化鋁粉體之製作 ………………………………….…. 33 4.2氮化鋁生胚之製作 …….………………………………. 33 4.2.1 燒結粉末之配製 …………..……………………. 33 4.2.2 壓錠成型 …………..……………………………. 34 4.2.3 去除結合劑 …………..…………………………. 34 4.3 氮化鋁坩堝之製作 ……………………………………. 34 4.4 燒結 ……………………………………………………. 35 4.4.1 傳統常壓燒結 ……………………………..…… 35 4.4.2 微波燒結 …………………………………….…. 36 4.5 粉體性質分析 …………………………………………. 37 4.5.1 粒徑分析 ……………………………………….. 37 4.5.2氮含量與氧含量分析 ……….……...…….…. 38 4.5.3比表面積分析 ……….…….…….……..……….. 38 4.5.4不純物分析 ……….….…….……….…….…….. 38 4.6 燒結性質分析 …………………………………………. 38 4.6.1 微分熱分析(DTA) ……………………………… 38 4.6.2 試片密度測量 ………………………………….. 39 4.6.3 線收縮率(Linear Shrinkage) …………………… 39 4.6.4 燒結收縮曲線 ………………………………….. 40 4.6.5 熱傳導性(Heat Transfer Property) ………….….. 40 4.6.6電性測試 ………………………………………... 40 4.7晶相及微結構分析 …….……….………….…………… 41 4.7.1 XRD分析 ……………………….…….….……... 41 4.7.2 SEM分析 …………………………………….…. 41 4.7.3 EDS分析 …………………………..……….…… 42 4.7.4 WDS分析 ……………………………………….. 42 4.7.5 TEM分析 ……………………………………….. 42 第五章 結果與討論 5.1微波燒結之溫度量測 …………..….……….………….. 46 5.2坩堝大小對微波燒結之影響 ………………………….. 49 5.3助劑對微波燒結之影響 ……………………………….. 49 5.3.1線收縮率與體密度 ………………………………. 50 5.3.2晶相組成分析 ……………….…….………….….. 51 5.3.3 微結構分析 ……………….…….……………….. 53 5.3.4 熱傳導值 ……………….…….………………….. 55 5.3.5 比介電常數及介電損失 ………………………… 56 5.3.6 添加Carbon與Li2O之影響 ……………………. 58 5.4 微波燒結與傳統燒結之比較 …………………………. 60 第六章 結論 參考文獻 ……………………………………………………..….. 91

    1. F. Miyashiro, N. Fwase, A. Tsuge, F. Ueno, M. Nakahashi and T. Takahashi, “High Thermal Conductivity Aluminum Nitride Ceramic Substrates and Packages ”, IEEE Trans. Comp., Hybrids, Manuf., Technol., 13[ 2], 313-319, June (1990).
    2. H. K. Bowen, “Basic Research Needs on High Temperature Ceramics for Energy Application”, Material Science and Engineering 44, 1, (1980).
    3. T. Watari, “Shape of AIN powders prepared by Vapor Phase Reaction of AlCl3.NH3-N2”, 日本窯業協會學術論文誌, 97 [8], 864, (1989).
    4. J. F. Crider, “Self-propagating High Temperature Synthesis-A Soviet Method for producing Ceramic Materials”, Ceram. Eng. Sci. Proc., 3[9-10]:519, (1982).
    5. S. Kumar, Key Engineering Materials, Vol 56-57, 183-188, (1991).
    6. A. G. Merzhanov, “Self-Propagating High Temperature Synthesis: Twenty Years of Search and Findings”, In Combustion and Plasma Synthesis of High-Temperature Materials, edited by Z.A. Munir and J.B. Holt, VCH, New York, USA, 1-53, (1990).
    7. Z. A. Munir, “Synthesis of High Temperature Materials by Self-Propagating Combustion Methods”, Ceram. Bull., 67[2], 342-349, (1988).
    8. A. G. Merzhanov, and I. P. Borovinskaya, Combust. Sci. Technol. 10, 195, (1975).
    9. G. Selvaduray, and L. Sheet, Mater. Sci. Technol., 9, 463, (1993).
    10. F. J-H. Haussonne, Mater. Manufacturing Process 10, 717, (1995).
    11. P. B. Dunscombe,”Heat Production in Mirowave–Irradiated Thermocouples ”,Med. Phys.,13(4),457-461,(1986)
    12. W. E. Olmstead,”A Model for Thermocouple Sensitivity during Microwave Heating”,Int. J. Heat Mass Transfer.,40(7),1559-1565,(1997).
    13. F. J-H. Haussonne, Mater. Manufacturing Process 10, 717, (1995).
    14. W. E. Olmstead,”A Model for Thermocouple Sensitivity during Microwave Heating”,Int. J. Heat Mass Transfer.,40(7),1559-1565,(1997).
    15. Z. A. Munri, and J. B, Holt, “The Combustion Synthesis of Refractory Nitrides”, J. Mater. Sci., 22, 710-714, (1987).
    16. J. Karpinski, and S. Porowski, ”High Pressure Thermodynamics of GaN”, J. Crystal Growth, 66, 11-20, (1984).
    17. (a)李威昌, ”燃燒法合成高性能材料:製程開發與反應機構探 討”, 成功大學博士論文84年畢業。
    (b) W. C. Lee, C. L. Tu, and S. L. Chung, J. Mater. Res., 10 [3], 774, (1995).
    (c)中華民國專利第71873號、美國第5460794號。
    (d)中華民國專利第67194號、美國第5453407號。
    18. 林政曉, “燃燒法合成氮化鋁粉體新方法與量產技術開發”, 成功大學碩士論文88年畢業。
    19. F. Miyashiro, N. Fwase, A. Tsuge, F. Ueno, M. Nakahashi and T. Takahashi, “High Thermal Conductivity Aluminum Nitride Ceramic Substrates and Packages ”, IEEE Trans. Comp., Hybrids, Manuf., Technol., 13[ 2], 313-319, June (1990).
    20. Y. Nagai, and G. C. Lai, “Preparation of AlN Powders by Wet Ball-Milling and Their Characterization”, Journal of the Ceramic Society of Japan, 105, 9-13, (1996).
    21. J. Bermudo, and M. I. Osendi, “Study of AlN and Si3N4 powders synthesized by SHS reactions”, Ceramics International 25, 607-612, (1999).
    22. The Dow Chemical Company, 美國專利第593310號, January 31, (1996).
    23. S. Surnev, D. Lepkova, and A. Yoleva, “Influence of the science additives on the phase composition and the thermal conductivity of aluminium nitride ceramics”, Mater. Sci. and Eng., B10, 35-40, (1991).
    24. G. Xu, H. Zhuang, J. Cai, and S. Xu, “Microwave Sintering of SHS-Produced AlN Powders”, Journal of Materials Synthesis and Processing, 4[ 5], 307-315, (1996).
    25. 陳信吉, “氮化鋁表面披覆之低溫燒結研究”, 成功大學碩士論文83年畢業。
    26. E. T. Thostentson, and T. -W. Chou, “Microwave processing: fundamentals and applications ”, Composites: Part A 30, 1055-1071, (1999).
    27.劉岐山, “微波能應用”, 電子工業出版社, (1990).
    28.汪建民, “陶瓷技術手冊”, 中華民國科技發展協進會, (1994)。
    29.黃昌偉, “陶瓷材料之熱性質分析”, 精密陶瓷特性及檢測分析, 10.1-10.54.
    30.W. J. Kim, D. K. Kim, and C. H. Kim, “Coating of Al2O3 Additive on AlN Powder and Its Effect on the Thermal Conductivity of AlN Ceramics”, Journal of Materials Synthesis and Processing, 3[1], 39-48, (1995).
    31.R. M. German, Liquid Phase Sintering, Plenum, New York, (1985).
    32.J. H. Harris, “Sintered Aluminum Nitride Ceramics for High-Powder Electronic Applications”, JOM, 56-60, (1998).
    33.Koji Watari, Hae J. Hwang, Motohiro Toriyama, and Shuzo Kanzaki, “Effective sintering aids for low-temperature sintering of AlN ceramics”, J. Mater. Res., 14[ 4], 1409-1417, (1999).
    34.G. C. Lai, and Y. Nagai, “Effect of Oxygen on Sintering of Aluminium Nitride with Y2O3 Sintering Aid”, Journal of the Ceramic Society of Japan, 103, 7-11, (1994).
    35.Aase Marie Hundere & Mari Ann Einarsrud, “Microstructural Development in AlN (YF3) Ceramics”, Journal of the European Ceramic Society, 17, 873-878, (1997).
    36.A. Geith, M. Kulig, T. Hofmann, and C. Russel, “Thermal conductivity of calcium-doped aluminium nitride ceramics”, Journal of Materials Science, 28, 865-869, (1993).
    37.張子岳, “AlN基版材料燒結之研究”, 成功大學碩士論文76年畢業。
    38. E. M. Levin, C. R. Robbins, and H. F. McMurolie, “Phase Diagrams for Ceramists”, The Am. Ceram. Society, Fourth Printing 1979.
    39. M. Nouaoura et al.,”Problem Relevant to the Use of Optical Pyrometer for Substrate Temperature Measurements and Controls in Molecular Beam Epitaxy”,J. Vac. Sci. Tehnol. B,13(1),83-87,(1995).
    40. C. Kittel,”Introduction to Solid State Physics” 5th Edition,John Wiley and Sons Inc.(1976)
    41. Levin E M,”Phase Diagrams for eramists”,The American Ceamic Society,(1975).
    42.M. Schwartz, “High-Temperature Processing and Consolidation”, Handbook of Structural Ceramics, 6.30-6.35, (1991).
    43.G. C. Lai, and Y. Nagai,“ Effect of Oxygen on Sintering Aluminium Nitride with Y2O3 Sintering Aid ”, J. Am. Ceram. Soc., 103[1], 6-10, (1995).
    44.K. Sakuma, A. Okada, and H.Kawamoto, “Effects of Cation Impurities on Thermal Conductivity of Yttria-Doped Aluminum Nitride ”, J. Mater. Syn. and Pro., 6[5], 315-321, (1998).
    45.N. Komeya, H. Taniguchi, and I. Aso, Yogyo-Kyokai-Shi, 93, 1846-1850, (1985).
    46. E. M. Levin, C. R. Robbins, and H. F. McMurolie, “ phase Diagrams for Ceramists ”, The Am. Ceram. Soc., Fourth Printing 1979.
    47.Y. D. Yu, A. M. Hundere, and R. Hoier, “Microstructural characterization and microstructural effects on the thermalconductivity of AlN(Y2O3) ceramica ”, J. Eur. Ceram. Soc., 22, 247-252, (2002).
    48.G. Pezzotti, A. Nakahira, and M. Tajika,“ Effect of extended annealing cycles on the thermal conductivity of AlN/Y2O3 ceramics ”, J. Eur. Ceram. Soc., 20, 1319-1325, (2000).
    49. 徐洁,”AlN陶瓷中的晶界第二相”,J. Chin. Ceram. Soc.,23(1),(1995)
    50. Ying-Da Yu,”Microtructural characterization an microstructural effects on the thermal conductivity of AlN(Y2O3) ceramic”,J. Eur. Ceram. Soc.,22, 247-252,(2002).
    51. W. D. Kingery,”Introduction to Ceramic”,2nd Edition,John Wiley and Sons Inc.(1976).
    52. K. Okazaki,K. Nagata,”Effect of Grain Size and Porosity on Electrical and Optical Properties of PLZT Ceramics”,J. Am. Ceram. Soc., 56(2), 82-86,(1973).
    53. Relva C.Buchanan,”Ceramic Materials for Electronic”,Marcel Dekker Inc.
    54. Relva C.Buchanan,”Ceramic Materials for Electronic”,Marcel Dekker Inc.
    55. K. Shinozaki and A. Tsuge, ”Development of High Thermal Conductivity AlN”,Bull. Ceram. Soc. Jpn.,21,1130-1135,(1986).
    56. K. Watari,”Densification and Thermal Conductivity of AlN Doped with Y2O3,CaO,and Li2O”, J. Am. Ceram. Soc.,79(12),3103-3108,(1996).
    57. K. Watari,”Effect sintering aids for low-temperature sintering of AlN ceramics”,J. Mater. Res.,14(4),Apr (1999).
    58. T. Nakamatsu, ”The Effect of carbon coating of AlN powder on sintering behavior and thermal conuctivity”,J. Mater. Sci.,34,1553-1556,(1999).

    下載圖示 校內:2005-07-08公開
    校外:2005-07-08公開
    QR CODE