簡易檢索 / 詳目顯示

研究生: 張祐鑫
Chang, Yu-Hsin
論文名稱: Mirtazapine在大白鼠體內的立體選擇性動力學
Stereoselective Pharmacokinetics of Mirtazapine in Rats
指導教授: 周辰熹
Chou, Chen-Hsi
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學研究所
Institute of Clinical Pharmacy
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 94
中文關鍵詞: 立體選擇性藥物動力學毛細管電泳
外文關鍵詞: Mirtazapine, Stereoselectivity, Pharmacokinetics, Capillary electrophoresis
相關次數: 點閱:122下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多對掌性藥品 (chiral drugs) 在臨床上卻是使用其外消旋混合物 (racemic mixtures),即兩鏡像異構物以50:50比例混合之消旋化物,而化學結構相似的兩鏡像異構物卻常有著不同的藥效與藥動性質。一般非對掌選擇性的藥物分析條件,得到的藥物血中濃度是個別鏡像異構物的總和,而非個別鏡像異構物的血中濃度,因此並無法對於對掌性藥品的立體選擇性動態學做定性或定量的探討。Mirtazapine是一種四環類抗憂鬱劑,具有兩個鏡像異構物,相關研究顯示mirtazapine鏡像異構物的藥物動力學存在有差異性,且造成差異的原因可能是因為mirtazapine鏡像異構物在生物轉化途徑或與藥物運輸子的作用不同有關。
    因此本研究目的為首要開發並確效可定量生物體液中mirtazapine鏡像異構物濃度之對掌性毛細管電泳法。其次以大鼠小腸灌流實驗研究mirtazapine鏡像異構物在小腸吸收的機制。並以靜脈注射給予mirtazapine於大白鼠評估其立體選擇性動力學並探討是否具有劑量依性關係。
    實驗結果已成功開發並確效一對掌性毛細管電泳法用來定量mirtazapine在動物體液內之濃度,且實際應用至大白鼠小腸灌流實驗及大白鼠體內動力學研究,且此分析方法經調整後也能合適地運用在定量人體血漿內之濃度。由小腸灌流實驗顯示,在灌流藥品濃度由5 μg/mL提高到250 μg/mL,其穩定狀態藥品吸收分率(Fabs)下降,推測mirtazapine鏡像異構物在小腸的吸收機轉應涉及腸道載體(intestinal carriers)的運輸,另外不論在灌流哪個藥品濃度下,兩鏡像異構物之Fabs皆無顯著差異,說明了mirtazapine鏡像異構物於小腸的吸收不具有立體選擇性。在大白鼠體內的劑量依性試驗顯示在靜脈注射1-10 mg/kg下,mirtazapine鏡像異構物在血漿中的藥動學呈現線性且具有立體選擇性,而mirtazapine及其代謝物在膽汁濃度高於血漿顯示其膽汁排除具有主動分泌的機制並可能涉及運輸載體調控。
    整體而言,mirtazapine鏡像異構物在大白鼠小腸的吸收不具立體選擇性。在大白鼠體內的藥物動力學方面,mirtazapine鏡像異構物在大白鼠體內的動力學呈現線性,並且mirtazapine及其代謝物的膽汁排泄為一主動運輸並可能涉及運輸載體之調控。Mirtazapine鏡像異構物於體內之藥品動態具有差異性,將來仍須對於mirtazapine鏡像異構物的藥動機制做進一步的探討。

    Introduction: Many chiral drugs are used as their racemic mixtures in clinical practice, although it is well recognised that the enantiomers of a chiral drug may possess different pharmacokinetic and pharmacodynamic properties. Many studies dealing with chiral drugs which are administered as their racemates rely on non-stereoselective analytical techniques. It was shown that the use of such an analytical method can lead to the collection of data which may be both quantitatively and qualitatively inaccurate with respect to the individual enantiomers. Mirtazapine is a tetracyclic antidepressant that has two enantiomers. Several studies show that mirtazapine’s enantiomers display differences in disposition kinetics, probably owing to differences in both biotransformation and drug transport between the mirtazapine enantiomers

    Purpose: The aim of this study was to develop and validate a sensitive and enantioselective capillary electrophoretic (CE) method for the analysis of mirtazapine in biological fluids, and to apply the method to characterize the stereopharmacokinetics of mirtazapine in rats following intravenous administration. Besides, a rat small intestinal perfusion model was used to evaluate the absorption of mirtazapine enantiomers.

    Results: A simple and sensitive enantioselective capillary electrophoretic (CE) method for the quantification of mirtazapine enantiomers in biological fluids was developed and applied successfully to examine the stereoselective pharmacokinetics of mirtazapine in rats. The enantioselective capillary electrophoretic (CE) method was also apppied to determine the concentration of mirtazapine enantiomers in intestinal perfusate samples and human plasma successfully. In rat intestinal perfusion studies, with increasing perfusate mirtazapine concentration, the fraction of dose absorbed (Fabs) at steady state is decreasing. The concentration-dependent uptake of mirtazapine indicated that mirtazapine was absorbed in rat intestine by passive and carrier-mediated mechanisms. The absorption kinetics of mirtazapine enantiomers from intestine were similar, and did not exhibit stereoselectivity. Following bolus injection of 1-10 mg/kg to rats, the disposition of mirtazapine enantiomers in plasma was linear and stereoselective. The concentration of mirtazapine and its metabolites in bile was greater than that in the plasma, suggesting that biliary transport of mirtazapine and its metabolite may be mediated by drug transporters.

    Conclusion: In summary, no stereoselectivity was displayed in the absorption of the mirtazapine enantiomers in rats. The disposition of mirtazapine enantiomers in plasma was linear, and distribution and elimination of mirtazapine enantiomers show stereoselective differences. The active biliary secretion of mirtazapne was found, suggesting that biliary transport of mirtazapine may be mediated by drug transporters. As mirtazapine displayed stereopharmacokinetics, further studies will be needed to fully eclucidate the detail mechanisms of its stereopharmacokinetics.

    中文摘要 i Abstract iii 誌謝 v 目錄 vi 表目錄 ix 圖目錄 x 縮寫表 xiii 第壹章 緒論 1 第一節 對掌性藥品動態學 1 一、 簡介 1 二、 對掌性藥品分離方法之開發 1 第二節 Mirtazapine簡介 .3 一、 物化特性 3 二、 藥理作用 3 三、 藥動性質 4 四、 Mirtazapine鏡像異構物藥理特性 5 五、 Mirtazapine之立體選擇性動力學與細胞色素基因多形性 5 第三節 Mirtazapine對掌性分析方法之文獻回顧 7 第四節 環糊精(Cyclodextrins)簡介 9 第五節 毛細管電泳介紹 10 一、 簡介 10 二、 儀器裝置 11 三、 分離原理 12 第六節 大白鼠小腸灌流實驗之簡介 16 第貳章 研究目的 18 第一節 Mirtazapine對掌性毛細管電泳法之開發與確效 18 第二節 大白鼠小腸灌流實驗 19 第三節 Mirtazapine鏡像異構物在大白鼠的體內藥物動力學 19 第參章 實驗材料、儀器及方法 20 第一節 實驗材料 20 一、 實驗動物 20 二、 藥品與試劑 20 第二節 實驗儀器 22 一、 紫外光/可見光分光光度計 22 二、 毛細管電泳系統 22 三、 大白鼠小腸灌流實驗 22 四、 微粒體培養 22 五、 靜脈插管手術 23 六、 繪圖及藥動分析軟體 24 第三節 實驗方法 24 一、 藥品配置 24 二、 毛細管電泳分析條件最適化 24 三、 大白鼠肝臟微粒體體外培養試驗及檢品製配 25 四、 對掌性分析方法於人體血漿檢品的應用 26 五、 大白鼠小腸灌流實驗 26 六、 大白鼠靜脈插管手術 28 七、 Mirtazapine生物檢品製備 30 八、 研究設計 31 九、 數據解析 34 第肆章 研究結果 36 第一節 Mirtazapine對掌性毛細管電泳法之開發與確效 36 一、 分析條件最適化 36 二、 分析方法之確效 43 第二節 大白鼠小腸灌流實驗 58 一、 灌流液中酚紅(phenol red)濃度的測定 58 二、 劑量依性實驗 61 第三節 Mirtazapine鏡像異構物在大白鼠體內的動力學 67 第伍章 討論 79 第一節 Mirtazapine對掌性毛細管電泳法開發與確效 79 一、 分析條件最適化 79 二、 分析方法之確效 81 第二節 大白鼠小腸灌流實驗 85 一、 灌流液中酚紅(phenol red)濃度的測定 85 二、 劑量依性實驗 86 第三節 Mirtazapine鏡像異構物在大白鼠體內的動力學 87 第陸章 結論 89 參考文獻 90

    Aturki Z, Scotti V, D'Orazio G, Rocco A, Raggi MA and Fanali S (2007) Enantioselective separation of the novel antidepressant mirtazapine and its main metabolites by CEC. Electrophoresis 28:2717-2725.

    Barthe L, Woodley J and Houin G (1999) Gastrointestinal absorption of drugs: methods and studies. Fundam Clin Pharmacol 13:154-168.

    Baumann P, Jonzier-Perey M, Paus E and Nikisch G (2006) Mirtazapine enantiomers in blood and cerebrospinal fluid. Neuropsychobiology 54:179-181.

    Brewster ME and Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59:645-666.

    Brockmoller J, Meineke I and Kirchheiner J (2007) Pharmacokinetics of mirtazapine: enantioselective effects of the CYP2D6 ultra rapid metabolizer genotype and correlation with adverse effects. Clin Pharmacol Ther 81:699-707.

    de Boer T (1996) The pharmacologic profile of mirtazapine. J Clin Psychiatry 57 Suppl 4:19-25.

    de Santana FJM and Bonato PS (2008) Enantioselective analysis of mirtazapine and its two major metabolites in human plasma by liquid chromatography-mass spectrometry after three-phase liquid-phase microextraction. Anal Chim Acta 606:80-91

    de Santana FJ, Cesarino EJ and Bonato PS (2004) New method for the chiral evaluation of mirtazapine in human plasma by liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2004 Oct 5;809(2):351-6.

    Dodd S, Burrows GD and Norman TR (2000) Chiral determination of mirtazapine in human blood plasma by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 748:439-443.

    de Santana FJM, de Oliveira ARM and Bonato PS (2005) Chiral liquid chromatographic determination of mirtazapine in human plasma using two-phase liquid-phase microextraction for sample preparation. Analytica Chimica Acta 549:96-103.
    Delbressine LP, Moonen ME, Kaspersen FM, Wagenaars GN, Jacobs PL, Timmer CJ, Paanakker JE, van Hal HJ and Voortman G (1998) Pharmacokinetics and biotransformation of mirtazapine in human volunteers. Clin Drug Investig. 1998;15(1):45-55.

    Fagerholm U, Johansson M and Lennernas H (1996) Comparison between permeability coefficients in rat and human jejunum. Pharm Res 13:1336-1342.

    Fanali S, Aturki Z, Kasicka V, Raggi MA and D'Orazio G (2005) Enantiomeric separation of mirtazapine and its metabolites by nano-liquid chromatography with UV-absorption and mass spectrometric detection. J Sep Sci 28:1719-1728.

    Freynhagen R, Vogt J, Lipfert P and Muth-Selbach U (2006) Mirtazapine and its enantiomers differentially modulate acute thermal nociception in rats. Brain Res Bull 69:168-173.

    Ha PT, Hoogmartens J and Van Schepdael A (2006) Recent advances in pharmaceutical applications of chiral capillary electrophoresis. J Pharm Biomed Anal 41:1-11.

    Hermann Wätzig* and Stefan Günter (2003) Capillary Electrophoresis - A High Performance Analytical Separation Technique. Clin Chem Lab Med. 41:724-738.

    Hutt AJ (2007) Chirality and pharmacokinetics: an area of neglected dimensionality? Drug Metabol Drug Interact 22:79-112.

    Lacroix M, Poinsot V, Fournier C and Couderc F (2005) Laser-induced fluorescence detection schemes for the analysis of proteins and peptides using capillary electrophoresis. Electrophoresis 26:2608-2621.

    Lin YW, Chiu TC and Chang HT (2003) Laser-induced fluorescence technique for DNA and proteins separated by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 793:37-48.

    Loftsson T and Brewster ME (1996) Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci 85:1017-1025.

    Lu H (2007) Stereoselectivity in drug metabolism. Expert Opin Drug Metab Toxicol 3:149-158.

    Mandrioli R, Pucci V, Sabbioni C, Bartoletti C, Fanali S and Raggi MA (2004) Enantioselective determination of the novel antidepressant mirtazapine and its active demethylated metabolite in human plasma by means of capillary electrophoresis. J Chromatogr A 1051:253-260.

    Meineke I, Steinmetz H, Kirchheiner J and Brockmoller J (2006) Therapeutic drug monitoring of mirtazapine, desmethylmirtazapine, 8-hydroxymirtazapine, and mirtazapine-N-oxide by enantioselective HPLC with fluorescence detection. Ther Drug Monit. 2006 Dec;28(6):760-5.

    Muhlbacher M, Konstantinidis A, Kasper S, Eichberger G, Hinterhuber H, Hofmann P, Nimmerrichter A, Schubert H, Egger C, Nickel M and Stuppaeck C (2006) Intravenous mirtazapine is safe and effective in the treatment of depressed inpatients. Neuropsychobiology 53:83-87.

    Paus E, Jonzier-Perey M, Cochard N, Eap CB and Baumann P (2004) Chirality in the new generation of antidepressants: stereoselective analysis of the enantiomers of mirtazapine, N-demethylmirtazapine, and 8-hydroxymirtazapine by LC-MS. Ther Drug Monit. 2004 Aug;26(4):366-74.

    Ranade VV and Somberg JC (2005) Chiral cardiovascular drugs: an overview. Am J Ther 12:439-459.

    Raoof AA, Butler J and Devane JG (1998) Assessment of regional differences in intestinal fluid movement in the rat using a modified in situ single pass perfusion model. Pharm Res 15:1314-1316.

    Scriba GKE (2008) Cyclodextrins in capillary electrophoresis enantioseparations - recent developments and applications. Journal of Separation Science 31:1991-2011.

    Stewart BH, Chan OH, Lu RH, Reyner EL, Schmid HL, Hamilton HW, Steinbaugh BA and Taylor MD (1995) Comparison of intestinal permeabilities determined in multiple in vitro and in situ models: relationship to absorption in humans. Pharm Res. 1995 May;12(5):693-9.

    Sutton SC, Rinaldi MT and Vukovinsky KE (2001) Comparison of the gravimetric, phenol red, and 14C-PEG-3350 methods to determine water absorption in the rat single-pass intestinal perfusion model. AAPS PharmSci 3:E25.

    Timmer CJ, Sitsen JM and Delbressine LP (2000) Clinical pharmacokinetics of mirtazapine. Clin Pharmacokinet 38:461-474.

    von Richter O, Greiner B, Fromm MF, Fraser R, Omari T, Barclay ML, Dent J, Somogyi AA and Eichelbaum M (2001) Determination of in vivo absorption, metabolism, and transport of drugs by the human intestinal wall and liver with a novel perfusion technique. Clin Pharmacol Ther 70:217-227

    康桂禎(2006)利用高效液相層析搭配螢光偵測器以研究Vardenafil在大白鼠的體內藥物動力學, 國立成功大學臨床藥學所94級碩士論文

    蘇美欣(2007)在大白鼠血漿中amisulpride鏡像異構物的高效液相層析法及毛細管電泳定量方法之開發與應用, 國立成功大學臨床藥學所95級碩士論文

    無法下載圖示 校內:2023-08-20公開
    校外:2058-08-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE