| 研究生: |
楊思雋 Yang, Szu-Chun |
|---|---|
| 論文名稱: |
肺癌照護的生活品質與成本效果分析 Quality of Life and Cost-Effectiveness in Lung Cancer Care |
| 指導教授: |
王榮德
Wang, Jung-Der 古鯉榕 Ku, Li-Jung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 公共衛生學系 Department of Public Health |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 肺癌篩檢 、成本效果 、領先時間偏差 、生活品質 、標靶藥物 、EGFR突變 |
| 外文關鍵詞: | lung cancer screening, cost-effectiveness, lead-time bias, quality of life, tyrosine kinase inhibitor, EGFR mutation |
| 相關次數: | 點閱:147 下載:26 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
晚期診斷是改善肺癌預後的一大障礙,利用低劑量電腦斷層篩檢可以降低肺癌的死亡。然而,目前對於利用電腦斷層篩檢早期肺癌的成本效果仍沒有共識。因為晚期肺癌接受同一線不同藥物的整體存活往往沒有差異,選擇生活品質較好的治療愈形重要。為了優化肺癌照護,本篇論文有兩大目標:一、發展能校正領先時間偏差的方法,估計在台灣運用電腦斷層篩檢早期肺癌的成本效果;二、比較晚期EGFR突變非小細胞肺癌三種第一線標靶藥物治療後的生活品質變化。
為估計電腦斷層篩檢的成本效果,我們從全國長達13年追蹤的世代估算各組織型態、各期別肺癌的生活品質調整後預期壽命、損失的生活品質調整後預期壽命(loss-of-QALE)與終身醫療花費。National Lung Screening Trial裡的期別轉變被拿來計算:電腦斷層篩檢挽救的loss-of-QALE、多花的終身醫療花費。篩檢陰性、偽陽性以及輻射誘發肺癌多花的費用也被包含在內,進而從公眾支付者的角度來計算成本效果增量比。另外,為了比較不同標靶藥物治療後的生活品質,我們2011至2016年間使用歐洲生活品質五層面量表、世界衛生組織生活品質問卷(台灣簡明版)量測病人的效用值與生活品質分數。利用核心平滑的方式,畫出治療後隨時間變化的生活品質曲線。同時我們也重覆收錄會影響生活品質的變項,放入混和模式處理干擾。
電腦斷層篩檢增量的費用為每人22,769美金。將之除以挽救的loss-of-QALE(1.16生活品質調整後存活年),成本效果增量比為一個生活品質調整後存活年美金19,695元。拿Dutch-Belgian Lung Cancer Screening Trial篩檢診斷肺癌的期別分布來做敏感度分析,成本效果增量比會掉到一個生活品質調整後存活年美金10,953元。而不同標靶藥物治療後生活品質的研究,共有344病人參與,得到934筆重複測量的資料。我們發現使用afatinib較之gefitinib在生理、心理、社會範疇及10個子項生活品質分數較差,控制了日常體能狀態、疾病惡化等干擾後亦是如此。這個差別似乎在治療的10個月後特別明顯。此外具exon 19 deletions基因變異的病人治療後的效用值與多數生活品質的分數持續較佳。
總結來說,在台灣對於高危險的吸菸者實施低劑量電腦斷層篩檢符合成本效果。然而台灣女性只有約5 %吸菸,未來的研究應嘗試找出適合肺癌篩檢的非吸菸高危險族群。具exon 19 deletions基因突變的晚期非小細胞肺癌病人第一線標靶藥物治療後的生活品質較佳。我們第一個提出病人使用afatinib相較gefitinib有著較差的生活品質,不過這還需要未來更多研究的支持。
Late diagnosis is a fundamental obstacle to improving the outcomes of lung cancer, screening with low-dose computed tomography (CT) can reduce lung-cancer mortality. However, there is still a lack of consensus on the cost-effectiveness of CT-screening to detect operable lung cancer. Because different palliative treatments for inoperable lung cancer might not show difference in overall survival, choosing a treatment with better quality of life (QoL) becomes important. To optimize lung cancer care, this dissertation aims to: 1. Develop a method adjusting for lead-time bias to estimate the cost-effectiveness of implementing CT screening for lung cancer in Taiwan; 2. Compare dynamic changes in QoL after three first-line therapies for EGFR mutation-positive advanced non-small cell lung cancer.
To evaluate the cost-effectiveness of CT screening, we estimated quality-adjusted life expectancy (QALE), loss-of-QALE, and lifetime healthcare expenditures per case of lung cancer stratified by pathology and stage from a nation-wide, 13-year follow-up cohort. Cumulative stage distributions for CT-screening and no-screening were assumed equal to those for CT-screening and radiography-screening in the National Lung Screening Trial to estimate the savings of loss-of-QALE and additional costs of lifetime healthcare expenditures after CT screening. Costs attributable to screen-negative subjects, false-positive cases and radiation-induced lung cancer were included to obtain the incremental cost-effectiveness ratio from the public payer’s perspective. To compare QoL after different tyrosine kinase inhibitors (TKIs), we assessed the utility values and QoL scores of patients from 2011 to 2016 using the EuroQol five-dimension and World Health Organization Quality-of-Life—Brief questionnaires. QoL functions after initiation of treatment were estimated using a kernel smoothing method. Dynamic changes in major determinants were repeatedly assessed for constructing mixed models.
After dividing the incremental costs (US$22,769) by savings of loss-of-QALE (1.16 quality-adjusted life year (QALY)), the incremental cost-effectiveness ratio for CT screening was US$19,695 per QALY. This ratio would fall to US$10,953 per QALY if the stage distribution for CT-screening was the same as that of screen-detected cancers in the NELSON trial. A total of 344 patients with 934 repeated assessments were enrolled in the QoL study. There were significantly lower QoL scores for afatinib versus gefitinib in physical, psychological, social domains, and 10 facets. After controlling for performance status, disease progression, and other confounders in the mixed models, these effects still existed. The differences seemed to appear 10 months after initiation of treatment. We also found that patients with exon 19 deletions showed consistently higher utility value and QoL scores in most domains and facets after initiation of treatment.
In conclusion, low-dose CT screening for lung cancer among high-risk smokers would be cost-effective in Taiwan. As only about 5% of our women are smokers, future research is necessary to identify the high-risk groups among non-smokers and increase the coverage. Patients with exon 19 deletions receiving first-line TKIs for advanced non-small cell lung cancer had better QoL. The initial detection of lower scores of QoL for afatinib in comparison with gefitinib warrants more studies for corroboration.
1. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM, Sicks JD. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365(5):395–409 (2011).
2. Berger ML, Sox H, Willke RJ, Brixner DL, Eichler HG, Goettsch W, Madigan D, Makady A, Schneeweiss S, Tarricone R, Wang SV, Watkins J, Mullins CD. Good practices for real-world data studies of treatment and/or comparative effectiveness: recommendations from the joint ISPOR-ISPE Special Task Force on real-world evidence in health care decision making. Value Health 20(8):1003–8 (2017).
3. Bertram MY, Lauer JA, De Joncheere K, Edejer T, Hutubessy R, Kieny MP, Hill SR. Cost-effectiveness thresholds: pros and cons. Bull World Health Organ 94(12):925–30 (2016).
4. Birkett DJ. Pocket Guide: Pharmacokinetics Made Easy (2nd ed). McGraw-Hill: New York, U.S.A. (2011).
5. Black WC, Keeler EB, Soneji SS, Sicks JD, Keeler EB, Aberle DR, Naeim A, Church TR, Silvestri GA, Gorelick J, Gatsonis C. Cost-effectiveness of CT screening in the National Lung Screening Trial. N Engl J Med 371(19):1793–802 (2014).
6. Burnet NG, Jefferies SJ, Benson RJ, Hunt DP, Treasure FP. Years of life lost (YLL) from cancer is an important measure of population burden--and should be considered when allocating research funds. Br J Cancer 92(2):241–5 (2005).
7. Cahill J, Learner N. Managed care pharmacy sees potential of comparative effectiveness research to improve patient care and lower costs. Pharmacoeconomics 28(10):931–44 (2010).
8. Carney DN. Lung cancer – time to move on from chemotherapy. N Engl J Med 346(2):126–8 (2002).
9. Castellanos E, Feld E, Horn L. Driven by mutations: the predictive value of mutation subtype in EGFR-mutated non-small cell lung cancer. J Thorac Oncol 12(4):612–23 (2017).
10. Chouaid C, Agulnik J, Goker E, Herder GJ, Lester JF, Vansteenkiste J, Finnern HW, Lungershausen J, Eriksson J, Kim K, Mitchell PL. Health-related quality of life and utility in patients with advanced non-small-cell lung cancer: a prospective cross-sectional patient survey in a real-world setting. J Thorac Oncol 8(8):997–1003 (2013).
11. Daniels N, Porteny T, Urritia J. Expanded HTA: enhancing fairness and legitimacy. Int J Health Policy Manag 5(1):1–3 (2015).
12. de Koning HJ, Meza R, Plevritis SK, ten Haaf K, Munshi VN, Jeon J, Erdogan SA, Kong CY, Han SS, van Rosmalen J, Choi SE, Pinsky PF, Berrington de Gonzalez A, Berg CD, Black WC, Tammemägi MC, Hazelton WD, Feuer EJ, McMahon PM. Benefits and harms of computed tomography lung cancer screening strategies: a comparative modeling study for the U.S. Preventive Services Task Force. Ann Intern Med 160(5):311–20 (2014).
13. Edejer T, Baltussen R, Adam T, Hutubessy R, Acharya A, Evans DB, Murray CJL. Making Choices in Health: WHO Guide to Cost-effectiveness Analysis. World Health Organization: Geneva, Switzerland (2003).
14. Edge S, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A. AJCC Cancer Staging Manual (7th ed). Springer-Verlag: New York, U.S.A. (2010).
15. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–47 (2009).
16. Fang CT, Chang YY, Hsu HM, Twu SJ, Chen KT, Lin CC, Huang LY, Chen MY, Hwang JS, Wang JD, Chuang CY. Life expectancy of patients with newly-diagnosed HIV infection in the era of highly active antiretroviral therapy. QJM 100(2):97–105 (2007).
17. Field JK, van Klaveren R, Pedersen JH, Pastorino U, Paci E, Becker N, Infante M, Oudkerk M, de Koning HJ. European randomized lung cancer screening trials: Post NLST. J Surg Oncol 108(5):280–6 (2013).
18. Field JK, Duffy SW, Baldwin DR, Whynes DK, Devaraj A, Brain KE, Eisen T, Gosney J, Green BA, Holemans JA, Kavanagh T, Kerr KM, Ledson M, Lifford KJ, McRonald FE, Nair A, Page RD, Parmar MK, Rassl DM, Rintoul RC, Screaton NJ, Wald NJ, Weller D, Williamson PR, Yadegarfar G, Hansell DM. UK Lung Cancer RCT Pilot Screening Trial: baseline findings from the screening arm provide evidence for the potential implementation of lung cancer screening. Thorax 71(2):161–70 (2016).
19. Gareen IF, Duan F, Greco EM, Snyder BS, Boiselle PM, Park ER, Fryback D, Gatsonis C. Impact of lung cancer screening results on participant health-related quality of life and state anxiety in the National Lung Screening Trial. Cancer 120(21):3401–9 (2014).
20. Goulart BH, Bensink ME, Mummy DG, Ramsey SD. Lung cancer screening with low-dose computed tomography: costs, national expenditures, and cost-effectiveness. J Natl Compr Canc Netw 10(2):267–75 (2012).
21. Greenhalgh J, Dwan K, Boland A, Bates V, Vecchio F, Dundar Y, Jain P, Green JA. First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer. Cochrane Database Syst Rev 25(5):CD010383 (2016).
22. Henschke CI, Yankelevitz DF, Yip R, Reeves AP, Farooqi A, Xu D, Smith JP, Libby DM, Pasmantier MW, Miettinen OS. Lung cancers diagnosed at annual CT screening: volume doubling times. Radiology 263(2): 578–83 (2012).
23. Horeweg N, van der Aalst CM, Thunnissen E, Nackaerts K, Weenink C, Groen HJ, Lammers JW, Aerts JG, Scholten ET, van Rosmalen J, Mali W, Oudkerk M, de Koning HJ. Characteristics of lung cancers detected by computer tomography screening in the randomized NELSON trial. Am J Respir Crit Care Med 187(8):848–54 (2013).
24. Hsu CH, Tseng CH, Chiang CJ, Hsu KH, Tseng JS, Chen KC, Wang CL, Chen CY, Yen S, Chiu CH, Huang MS, Yu CJ, Tsai YH, Chen JS, Tsai CM, Chou TY, Lin KC, Tsai MH, Lee WC, Ku HY, Liu TW, Yang TY, Chang GC. Characteristics of young lung cancer: analysis of Taiwan’s nationwide lung cancer registry focusing on epidermal growth factor receptor mutation and smoking status. Oncotarget 7(29):46628–35 (2016).
25. Hsu JC, Lu CY. Longitudinal trends in use and costs of targeted therapies for common cancers in Taiwan: a retrospective observational study. BMJ Open 6(6):e011322 (2016).
26. Hwang JS, Wang JD. Monte Carlo estimation of extrapolation of quality-adjusted survival for follow-up studies. Stat Med 18(13):1627–40 (1999).
27. Hwang JS, Wang JD. Integrating health profile with survival for quality of life assessment. Qual Life Res 13(1):1–10 (2004).
28. Jarow JP, LaVange L, Woodcock J. Multidimensional evidence generation and FDA regulatory decision making: defining and using "real-world" data. JAMA 318(8):703–4 (2017).
29. Kanashiki M, Tomizawa T, Yamaguchi I, Kurishima K, Hizawa N, Ishikawa H, Kagohashi K, Satoh H. Volume doubling time of lung cancers detected in a chest radiograph mass screening program: comparison with CT screening. Oncol Lett 4(3):513–6 (2012).
30. Kawase A, Yoshida J, Ishii G, Nakao M, Aokage K, Hishida T, Nishimura M, Nagai K. Differences between squamous cell carcinoma and adenocarcinoma of the lung: are adenocarcinoma and squamous cell carcinoma prognostically equal? Jpn J Clin Oncol 42(3):189–95 (2012).
31. Ko YC, Cheng LS, Lee CH, Huang JJ, Huang MS, Kao EL, Wang HZ, Lin HJ. Chinese food cooking and lung cancer in women nonsmokers. Am J Epidemiol 151(2):140–7 (2000).
32. Kuan FC, Kuo LT, Chen MC, Yang CT, Shi CS, Teng D, Lee KD. Overall survival benefits of first-line EGFR tyrosine kinase inhibitors in EGFR-mutated non-small-cell lung cancers: a systematic review and meta-analysis. Br J Cancer 113(10):1519–28 (2015).
33. Langholz B, Goldstein L. Risk set sampling in epidemiologic cohort studies. Statist Sci 11(1):35–53 (1996).
34. Lee CH, Ko YC, Goggins W, Huang JJ, Huang MS, Kao EL, Wang HZ. Lifetime environmental exposure to tobacco smoke and primary lung cancer of non-smoking Taiwanese women. Int J Epidemiol 29(2):224–31 (2000).
35. Lee HY, Hung MC, Hu FC, Chang YY, Hsieh CL, Wang JD. Estimating quality weights for EQ-5D (EuroQol-5 dimensions) health states with the time trade-off method in Taiwan. J Formos Med Assoc 112(11):699–706 (2013).
36. Lee LJ, Chung CW, Chang YY, Lee YC, Yang CH, Liou SH, Liu PH, Wang JD. Comparison of the quality of life between patients with non-small-cell lung cancer and healthy controls. Qual Life Res 20(3):415–23(2011).
37. Lin CY, Yang SC, Lai WW, Su WC, Wang JD. Rasch models suggested the satisfactory psychometric properties of the World Health Organization Quality of Life-Brief among lung cancer patients. J Health Psychol 22(4):397–408 (2017).
38. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, Gemma A, Harada M, Yoshizawa H, Kinoshita I, Fujita Y, Okinaga S, Hirano H, Yoshimori K, Harada T, Ogura T, Ando M, Miyazawa H, Tanaka T, Saijo Y, Hagiwara K, Morita S, Nukiwa T. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362(25):2380–8 (2010).
39. McMahon PM, Kong CY, Bouzan C, Weinstein MC, Cipriano LE, Tramontano AC, Johnson BE, Weeks JC, Gazelle GS. Cost-effectiveness of computed tomography screening for lung cancer in the United States. J Thorac Oncol 6(11):1841–8 (2011).
40. Park K, Tan EH, O'Byrne K, Zhang L, Boyer M, Mok T, Hirsh V, Yang JC, Lee KH, Lu S, Shi Y, Kim SW, Laskin J, Kim DW, Arvis CD, Kölbeck K, Laurie SA, Tsai CM, Shahidi M, Kim M, Massey D, Zazulina V, Paz-Ares L. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol 17(5):577–89 (2016).
41. Passaro A, Di Maio M, Del Signore E, Gori B, de Marinis F. Management of nonhematologic toxicities associated with different EGFR-TKIs in advanced NSCLC: a comparison analysis. Clin Lung Cancer 15(4):307–12 (2014).
42. Patz EF, Pinsky P, Gatsonis C, Sicks JD, Kramer BS, Tammemägi MC, Chiles C, Black WC, Aberle DR. Overdiagnosis in low-dose computed tomography screening for lung cancer. JAMA Intern Med 174(2):269–74 (2014).
43. Paz-Ares L, Tan EH, O'Byrne K, Zhang L, Hirsh V, Boyer M, Yang JC, Mok T, Lee KH, Lu S, Shi Y, Lee DH, Laskin J, Kim DW, Laurie SA, Kölbeck K, Fan J, Dodd N, Märten A, Park K. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the phase IIb LUX-Lung 7 trial. Ann Oncol 28(2):270–7 (2017).
44. Pyenson BS, Sander MS, Jiang Y, Kahn H, Mulshine JL. An actuarial analysis shows that offering lung cancer screening as an insurance benefit would save lives at relatively low cost. Health Aff (Millwood) 31(4):770–9 (2012).
45. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, Palmero R, Garcia-Gomez R, Pallares C, Sanchez JM, Porta R, Cobo M, Garrido P, Longo F, Moran T, Insa A, De Marinis F, Corre R, Bover I, Illiano A, Dansin E, de Castro J, Milella M, Reguart N, Altavilla G, Jimenez U, Provencio M, Moreno MA, Terrasa J, Muñoz-Langa J, Valdivia J, Isla D, Domine M, Molinier O, Mazieres J, Baize N, Garcia-Campelo R, Robinet G, Rodriguez-Abreu D, Lopez-Vivanco G, Gebbia V, Ferrera-Delgado L, Bombaron P, Bernabe R, Bearz A, Artal A, Cortesi E, Rolfo C, Sanchez-Ronco M, Drozdowskyj A, Queralt C, de Aguirre I, Ramirez JL, Sanchez JJ, Molina MA, Taron M, Paz-Ares L. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13(3):239–46 (2012).
46. Sagawa M, Nakayama T, Tanaka M, Sakuma T, Sobue T. A randomized controlled trial on the efficacy of thoracic CT screening for lung cancer in non-smokers and smokers of <30 pack-years aged 50-64 years (JECS study): research design. Jpn J Clin Oncol 42(12):1219–21 (2012).
47. Sequist LV, Yang JC, Yamamoto N, O'Byrne K, Hirsh V, Mok T, Geater SL, Orlov S, Tsai CM, Boyer M, Su WC, Bennouna J, Kato T, Gorbunova V, Lee KH, Shah R, Massey D, Zazulina V, Shahidi M, Schuler M. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 31(27):3327–34 (2013).
48. Sheng M, Wang F, Zhao Y, Li S, Wang X, Shou T, Luo Y, Tang W. Comparison of clinical outcomes of patients with non-small-cell lung cancer harbouring epidermal growth factor receptor exon 19 or exon 21 mutations after tyrosine kinase inhibitors treatment: a meta-analysis. Eur J Clin Pharmacol 72(1):1–11 (2016).
49. Shmueli A, Fraifeld S, Peretz T, Gutfeld O, Gips M, Sosna J, Shaham D. Cost-effectiveness of baseline low-dose computed tomography screening for lung cancer: the Israeli experience. Value Health 16(6):922–31 (2013).
50. Sutiman N, Tan SW, Tan EH, Lim WT, Kanesvaran R, Ng QS, Jain A, Ang MK, Tan WL, Toh CK, Chowbay B. EGFR mutation subtypes influence survival outcomes following first-line gefitinib therapy in advanced Asian NSCLC patients. J Thorac Oncol 12(3):529–38 (2017).
51. Szende A, Oppe M, Devlin N. EQ-5D Value Sets: Inventory, Comparative Review and User Guide. Springer: Dodreht, the Netherlands (2007).
52. Takeda M, Okamoto I, Nakagawa K. Pooled safety analysis of EGFR-TKI treatment for EGFR mutation-positive non-small cell lung cancer. Lung Cancer 88(1):74–9 (2015).
53. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108 (2015).
54. van den Bergh KA, Essink-Bot ML, Borsboom GJ, Th Scholten E, Prokop M, de Koning HJ, van Klaveren RJ. Short-term health-related quality of life consequences in a lung cancer CT screening trial (NELSON). Br J Cancer 102(1):27–34 (2010).
55. van den Bergh KA, Essink-Bot ML, Borsboom GJ, Scholten ET, van Klaveren RJ, de Koning HJ. Long-term effects of lung cancer computed tomography screening on health-related quality of life: the NELSON trial. Eur Respir J 38(1):154–61 (2011).
56. Wang JW, Gong XH, Ding N, Chen XF, Sun L, Tang Z, Yu DH, Yuan ZP, Wang XD, Yu JM. The influence of comorbid chronic diseases and physical activity on quality of life in lung cancer survivors. Support Care Cancer 23(5):1383–9 (2015).
57. Won YW, Han JY, Lee GK, Park SY, Lim KY, Yoon KA, Yun T, Kim HT, Lee JS. Comparison of clinical outcome of patients with non-small-cell lung cancer harbouring epidermal growth factor receptor exon 19 or exon 21 mutations. J Clin Pathol 64(11):947–52 (2011).
58. Wood DE. National Comprehensive Cancer Network (NCCN) clinical practice guidelines for lung cancer screening. Thorac Surg Clin 25(2):185–97 (2015).
59. World Health Organization. WHOQOL-BREF Introduction, Administration, Scoring, and Generic Version of the Assessment, field trial version. World Health Organization: Geneva, Switzerland (1996).
60. Yang JJ, Zhou Q, Yan HH, Zhang XC, Chen HJ, Tu HY, Wang Z, Xu CR, Su J, Huang YS, Wang BC, Jiang BY, Bai XY, Zhong WZ, Yang XN, Wu YL. A phase III randomised controlled trial of erlotinib vs gefitinib in advanced non-small cell lung cancer with EGFR mutations. Br J Cancer 116(5):568–74 (2017).
61. Yang SC, Lai WW, Su WC, Wu SY, Chen HHW, Wu YL, Hung MC, Wang JD. Estimating the lifelong health impact and financial burdens of different types of lung cancer. BMC Cancer 13:579 (2013).
62. Yang SC, Lai WW, Chang HY, Su WC, Chen HHW, Wang JD. Estimation of loss of quality-adjusted life expectancy (QALE) for patients with operable versus inoperable lung cancer: Adjusting quality-of-life and lead-time bias for utility of surgery. Lung Cancer 86(1):96–101 (2014).
63. Yang SC, Lai WW, Hsiue TR, Su WC, Lin CK, Hwang JS, Wang JD. Health-related quality of life after first-line anti-cancer treatments for advanced non-small cell lung cancer in clinical practice. Qual Life Res 25(6):1441–9 (2016).
64. Yao G, Chung CW, Yu CF, Wang JD. Development and verification of validity and reliability of the WHOQOL-BREF Taiwan version. J Formos Med Assoc 101(5):342–51 (2002).
65. Yatabe Y, Kerr KM, Utomo A, Rajadurai P, Tran VK, Du X, Chou TY, Enriquez ML, Lee GK, Iqbal J, Shuangshoti S, Chung JH, Hagiwara K, Liang Z, Normanno N, Park K, Toyooka S, Tsai CM, Waring P, Zhang L, McCormack R, Ratcliffe M, Itoh Y, Sugeno M, Mok T. EGFR mutation testing practices within the Asia Pacific region: results of a multicenter diagnostic survey. J Thorac Oncol 10(3):438–45 (2015).
66. Zhang Y, Sheng J, Yang Y , Fang W, Kang S, He Y, Hong S, Zhan J, Zhao Y, Xue C, Ma Y, Zhou T, Ma S, Gao F, Qin T, Hu Z, Tian Y, Hou X, Huang Y, Zhou N, Zhao H, Zhang L. Optimized selection of three major EGFR-TKIs in advanced EGFR-positive non-small cell lung cancer: a network meta-analysis. Oncotarget 7(15):20093–108 (2016).
67. Zimmermann C, Burman D, Swami N, Krzyzanowska MK, Leighl N, Moore M, Rodin G, Tannock I. Determinants of quality of life in patients with advanced cancer. Support Care Cancer 19(5):621–9 (2011).