簡易檢索 / 詳目顯示

研究生: 傅育德
Fu, Yu-Te
論文名稱: 結合Wiimote感測於室內移動載具之技術發展與應用:移動定位、路徑演算、及人機整合
Development and Application of Wiimote-Based Indoor Mobile Carrier Technologies: Localization Schemes, Autonomous Path Planning, and Human-Machine Integration.
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 209
中文關鍵詞: 居家機器人Wiimote室內定位全向移動載具路徑規劃演算法使用者介面智慧生活
外文關鍵詞: Wiimote, Indoor localization, IR LED array, Path planning
相關次數: 點閱:116下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,服務型機器人廣泛運用在生活援助、家庭與醫療輔助等領域,本研究以運用在居家方面之服務型機器人為主,發展人機介面互動系統,使用者可更加容易操作機器人於地形複雜之室內環境中有效提升其工作效率,並針對機器人之應用需求設計使用者介面,強化機器人之實用度。為提升室內機器人於室內環境運作的可靠度,需依賴高精度之室內定位技術,於先前的研究中利用Wiimote硬體所開發之 Wiimote 2D 定位技術具高精度之室內定位成果,可提供機器人位置及偏轉方向,然而該定位系統在使用上於經過遮蔽區域後因採用相對座標的定位演算法而有定位失效的現象發生,因此本文為改善該系統之使用限制條件,發展可控式IR陣列於Wiimote室內定位系統,建立一室內的絕對座標系統作為本定位系統的定位演算法之依據,以擴展機器人在室內移動的運用性。另一方面,室內機器人路徑規劃也為機器人在室內移動的重要課題, 其牽涉路徑決策與執行功能,在機器人導入路徑規劃之後使其功能能夠更加完善,方能成功達到目的地執行任務,因此我們也發展一套機器人路徑規劃演算法,運用位能場的特性使機器人能夠於動態及靜態的環境中完成自主規畫路徑。最後整合全向移動載具(Omni-directional vehicle) 發展人機互動介面,提升使用者與機器人之間的互動效果,改善機器人操作時的便利性,以貼近實際的應用情境,達到智慧服務生活之目的。由實驗結果可知,本文所發展的定位系統可在經過遮蔽區域後成功恢復定位功能改善先前定位系統之使用限制,且在不受影響區域定位精度維持在公分等級,透過該定位系統之高定位精度特性,配合路徑軌跡規劃將能使得載具成功執行我們所希望的任務移位動作,而本文針對整體控制系統所設計之互動介面,則可有效提升使用者在操作機器人時的可控性與可觀性。

    The use of indoor robots for medical care and mobility assistance is increasing. The performance of such robots is reliant on efficient localization and autonomous path planning schemes. Therefore, this thesis mainly concerns on developing a norel Wiimote localization scheme and on proposing a potential field-base narigation scheme. For the first part, in our previous study the present group proposed a Wiimote 2D localization scheme in which a commercial Wiimote device was used to detect an IR LED array installed in the ceiling. However, the localization process failed when a clear line-of-sight (LOS) between the Wiimote and the LED array was lost. Accordingly, the present study proposes an improved Wiimote 2D localization scheme and autonomous path planning method based on a controllable IR array and simple path discovery algorithm, respectively. The experimental results show that the proposed localization system overcomes the LOS limitation of the original method and achieves a positioning accuracy of 1 ~ 2 cm. For second part, the path planning problem is to find a sequence of configurations that moves a robot from an initial configuration to a goal configuration without colliding with obstacles in the environment, we succful apply for potential function to develop the path planning scheme to find the path of the robot autonomy. Moreover, the simulation results confirm the ability of the robot to navigate autonomously to a pre-designated target destination and then to return to the starting point. Finially, integrate the localization scheme path discovery algorithm with Omni- wheel robot to reveal feasibility of indoor robot systems. Overall, the results presented in this study suggest that the proposed system has significant potential for the further development more apply of indoor robot systems.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 X 圖目錄 XI 符號說明 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究起源 5 1.3 相關研究之簡介 8 1.4 研究動機及目標 13 1.5 研究方法 16 1.6 全文架構 18 第二章 研究背景介紹 21 2.1 本章介紹 21 2.2 智慧生活相關研究 23 2.3 室內定位系統相關研究 28 2.4 室內機器人避障導航相關研究 35 2.5 本章結論 42 第三章 可控式陣列IR LED於WIIMOTE之室內定位技術 45 3.1 本章介紹 45 3.2 Wiimote室內定位技術之介紹 47 3.3 可控式陣列IR LED 於Wiimote之室內定位系統構想 52 3.4 絕對座標之建立與定位演算法 56 3.5 本章結論 62 第四章 可控式陣列IR LED於WIIMOTE之室內定位實驗 65 4.1 本章介紹 65 4.2 可控式陣列IR LED 於Wiimote之室內定位系統實現 68 4.2.1 硬體介紹 69 4.2.2 系統程式流程 70 4.3 實驗系統建立 74 4.3.1 行進間經遮蔽物之路徑定位實驗 76 4.3.2 區域遮蔽之範圍影響實驗 79 4.4 實驗結果與討論 81 4.5 本章結論 90 第五章 發展人機面板之動態模擬顯示及系統整合 93 5.1 本章介紹 93 5.2 LabVIEW人機介面之建立 96 5.3 定位資訊顯示及操作面板之建立與展示 99 5.3.1人機面板建立 99 5.3.2人機介面功能展示 103 5.4 結果與討論 106 5.5 本章結論 108 第六章 機器人移動模式路徑演算法 111 6.1 本章介紹 111 6.2 機器人移動導航之應用 114 6.3 路徑規劃演算法之設計 117 6.4 模擬地圖參數之建立 120 6.5 模擬結果之結果與討論 126 6.6 本章結論 136 第七章 可控式陣列IR LED定位系統與機器人移動模式路徑演算法之整合 139 7.1 本章介紹 139 7.2 實驗系統建立 141 7.3 實驗結果與討論 150 7.4 本章結論 159 第八章 研究結果與討論 161 8.1 本文歸納 161 8.2 可控式陣列IR LED定位系統 164 8.3 機器人移動模式路徑演算法 166 8.4 人機介面之整合 168 8.5 整體研究成果與延伸討論 170 8.6 本章結論 175 第九章 結論與未來展望 177 9.1 全文研究整理 177 9.2 本文結論 179 9.3 本文貢獻 181 9.4 未來展望 183 參考文獻 187 附錄A 實驗硬體設備 197 附錄A1 Billionton Bluetooth USB dongle之詳細規格 197 附錄A2 TSAL6400紅外線LED之詳細規格表 198 附錄A3 BS2系列處理器之詳細規格表 199 附錄A4 Arduino控制器 200 附錄B LABVIEW程式 201 附錄 B1 定位程式 201 附錄 B2 位能場程式 202 附錄 B3 避障路徑演算法模擬程式 203 附錄C 燈源控制 ARDUINO程式 205

    [1] International Federation of Robotics, http://www.ifr.org/
    [2] Taiwan Daifuku Co., Ltd., http://www.taiwandaifuku.com/company/index.php
    [3] International Federation of Robotics, http://www.ifr.org/
    [4] MARKETSANDMARKETS, http://www.marketsandmarkets.com/
    [5] TOYOTA Inc., http://www.toyota.co.jp/en/special/robot/
    [6] Roomba機器人, http://www.roombavac.com/buyroomba/defaultB.asp
    [7] Bender Robotics,Ltd., http://www.advee.eu
    [8] C. Kee, D. Yun, and H. Jun, "Precise calibration method of pseudolite positions in indoor navigation systems," Computers & Mathematics with Applications, vol.46, pp.1711-1724, December 2003.
    [9] H. M. Khoury, and V. R. Kamat, "Evaluation of position tracking technologies for user localization in indoor construction environments," Automation in Construction, vol.18, pp.444-457, August 2009.
    [10] In-Location Alliance, Rafe Blandford, http://www.allaboutsymbian.com/flow/item/15553_In-Location_Alliance_aims_to_d.php
    [11] 陳柏維, Wiimote 紅外線室內定位技術與運動控制應用於機器建築與智慧生活之研究, 國立成功大學奈米科技暨微系統工程系碩士論文, 2010.
    [12] 顧迪,發展Wiimote室內定位技術與全向移動載具軌跡追蹤控制器與其於智慧生活之應用,國立成功大學機械工程學系碩士論文, 2011.
    [13] 李庭豪、陳名薪、歐廣順、陳國聲,” Wiimote 3D空間定位技術之分析與實現,” 中國機械工程學會第二十九屆全國學術研討會, 2012
    [14] 畢家興, 蔡怡芳, 歐廣順, 陳國聲, “應變式一維觸控定位系統設計分析與實驗研究,” 中華民國力學學會第三十四屆力學會議, 2010
    [15] 吳名烽,以力規發展智慧地板及其室內定位之應用,國立成功大學機械工程學系碩士論文, 2012.
    [16] 陳名薪,發展機器人導航方法及群體操控技術與其在智慧生活之應用,國立成功大學機械工程學系碩士論文, 2012.
    [17] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, "LANDMARC: Indoor location sensing using active RFID," Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, pp.407-415, March 2003.
    [18] R. Want, A. Hopper, V. Falcão, and J. Gibbons,, "The active badge location system, " ACM Transaction on Information Systems, vol.40, pp. 91-102, June 1992.
    [19] M. Maeda, T. Ogawa, T. Machida, and H. Takemura, ”Position detection for a navigation support by augmented reality using infrared identifications”, Technical Report of the Institute of Electronics, Information and Communication Engineers of Japan, Image Engineering, vol.102, pp.59-64, June 2002.
    [20] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, "The cricket location-support system," in Proc. 6th ACM MOBICOM, August 2000.
    [21] G. Mao, B. Fidan, and B. D. O. Anderson , "Wireless sensor network localization techniques," Computer Networks, vol.51, pp.2529-2553, January 2007.
    [22] P. Baronti, P. Pillai1, V. Chook, S. Chessa, A. Gotta,and Y. F. Hu,, "Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards," Computer Communications, vol.30, pp.1655-1695, March 2007.
    [23] J. Yick, B. Mukherjee, and D. Ghosal, "Wireless sensor network survey," Computer Networks, vol.52, pp.2292-2330, January 2008.
    [24] S. Yun, J. Lee, W. Chung, E. Kim,and S. Kim, "A soft computing approach to localization in wireless sensor networks," Expert Systems with Applications, vol.36, pp.7552-7561, April 2009.
    [25] 卓尚澤,室內定位技術簡介, 元智大學老人福祉科技研究中心2009.
    [26] 工業技術研究院, Industrial Technology Research Insitute (ITRI), http://www.itri.org.tw/
    [27] S. Tilch, and R. Mautz, "Current investigations at the ETH Zurich in optical indoor positioning," 7th Workshop on Positioning Navigation and Communication, pp.174-178, Dresden, Germany, March 2010.
    [28] K. Rebai, A. Benabderrahmane, O. Azouaoui, and N. Ouadah, "Moving obstacles detection and tracking with laser range finder," International Conference on Advanced Robotics, pp.1-6, June 2009.
    [29] J. Aranda, A. Grau, and J. Climent, "Control architecture for a three-wheeled roller robot, " AMC’98-Coimbra. 5th International Workshop on Advanced Motion Control, pp.518-523, July 1998.
    [30] 吳建中, 莊杉良,"智慧生活空間系統可監控居家環境的機器人," Conference on Information Technology and Applications in Outlying Islands, 2009.
    [31] Smart Living Interactive Innovation Center(SLIIC),智慧生活科技 區域整合中心,http://www.uns.org.tw/about_us
    [32] S. Vicini,S. Bellini, and A. Sanna,”The city of the future living lab,” International Journal of Automation and Smart Technology
    (auSMT) , vol.2, pp.201-208, December 2012.
    [33] A.A.Karpov, L.Akarun, and A.L. Ronzhin,” Multimodal assistive systems for a smart living environment,” Saint-Petersburg Institute for Informatics and Automation (SPIIRAS) Proceedings, pp.48-64, April 2011.
    [34] M.W. Feng, S.L. Wen, K.C. Tsai, Y.C. Liu, and H.R. Lai,” Wireless sensor network and sensor fusion technology for ubiquitous smart living space applications,” Second International Symposium on Universal Communication, pp.295-302, December 2008.
    [35] Y. H. Seo, S. S. Kwak, and T. K. Yang, "Mobile robot control using smart phone and its performance evaluation," Advanced Communication and Networking - Communications in Computer and Information Science, vol.199, pp.362-369, August 2011.
    [36] K. Masuda, T. Horiguchi, K. Ookomori, H. Watanabe, K. Ozawa, T. Yoshinaga, and Y. Aoki, "Development of graphical user interface to control remote probe by reflecting contact force on body surface for tele-echography system," 4TH European conference of the international federation for medical and biological engineering, vol.22, pp.927-931, November 2008.
    [37] 橘色科技,
    http://zh.wikipedia.org/wiki/%E6%A9%98%E8%89%B2%E7%A7%91%E6%8A%80
    [38] 台灣大學智慧生活科技整合與創新研究中心智慧呵護技術,http://insight.ntu.edu.tw/node/102
    [39] Eco-City健康樂活城智慧生活與健康人生並進展場,http://www.ecocity.org.tw/city_news/epaper_news/one_news.aspx?auto_id=186
    [40] 成功大學人本智慧生活科技整合中心成大80.觸動80-互動數位與前瞻科技展,http://touch.ncku.edu.tw/
    [41] 台灣大學智慧生活科技整合與創新研究中心, http://insight.ntu.edu.tw/zh-tw/
    [42] Eco-City健康樂活城,http://www.ecocity.org.tw/
    [43] 成功大學人本智慧生活科技整合中心,http://touch.ncku.edu.tw/
    [44] 陳柏維, 歐廣順, 林韋澄, 陳國聲, "Wiimote紅外線室內定位技術與運動控制應用於智慧建築之研究," 中國機械工程學會第二十六屆全國學術研討會論文集, 成功大學, 2009.
    [45] B. Barshan, and H. Durrant-Whyte,” Inertial navigation systems for mobile robots,” IEEE Transactions on Robotics and Automation, vol.11, pp.328-342, June 1995.
    [46] M. Heidari, N. A. Alsindi, and K. Pahlavan,” UDP identification and error mitigation in ToA-Based indoor localization systems using neural network architecture,” IEEE Transactions on Wireless Communications, vol.8, pp.3597-3606, July 2009.
    [47] A. S. Paul, and E. A. Wan, ” RSSI-Based indoor localization and tracking using sigma-point kalman smoothers,” IEEE Journal of Selected Topics in Signal Processing, vol.3, pp.860-873, October 2009.
    [48] Antonio Ramón Jiménez Ruiz, Fernando Seco Granja, José Carlos Prieto Honorato, and Jorge I. Guevara Rosas,” Accurate pedestrian indoor navigation by tightly coupling Foot-Mounted IMU and RFID measurements,” IEEE Transactions on Instrumentation and Measurement, vol.61, pp.178-189, January 2012.
    [49] E. DiGiampaolo, and F. Martinelli,” A passive UHF-RFID system for the localization of an indoor autonomous vehicle,” IEEE Transactions on Industrial Electronics, vol.59, pp.3961-3970, October 2012.
    [50] N. Kothari, B. Kannan, E. D. Glasgwow, and M. Bernardine Dias,” Robust indoor localization on a commercial smart phone,” The International Workshop on Cooperative Robots and Sensor Networks, December 2012.
    [51] M. Altini, D. Brunelli, E. Farella, and L. Benini,” Bluetooth indoor localization with multiple neural networks,” 5th International Symposium on Wireless Pervasive Computing (ISWPC), pp.295-300, May 2010.
    [52] L. Pei, R. Chen, J. Liu, T. Tenhunen, H. Kuusniemi, and Y. Chen,” Inquiry-based bluetooth indoor positioning via RSSI probability distributions,” Second International Conference on Advances in Satellite and Space Communications, pp.151-156, June 2010.
    [53] L. Cheng, C.D. Wu, and Y.Z. Zhang,” Indoor robot localization based on wireless sensor networks,” IEEE Transactions on Consumer Electronics, vol.57, pp.1099-1104, August 2011.
    [54] A.M.G. Pinto, A.P. Moreira, and P.G. Costa,” Indoor localization system based on artificial landmarks and monocular vision,” TELKOMNIKA, vol.10, pp. 609-620, December 2012.
    [55] S.Y. Jung, S. Hann, and C.S. Park,” TDOA-Based optical wireless indoor localization using led ceiling lamps,” IEEE Transactions on Consumer Electronics, vol.57, pp.1592-1597, November 2011.
    [56] Omni wheel, http://en.wikipedia.org/wiki/Omni_wheel
    [57] J. Aranda, A. Grau, and J. Climent, "Control architecture for a three-wheeled roller robot," AMC’98-Coimbra. 5th International Workshop on Advanced Motion Control, pp.518-523, July 1998.
    [58] K.S. Byun, S. J. Kim, and J. B. Song,"Design of a four-wheeled omnidirectional mobile robot with variable wheel arrangement mechanism, " Proceedings of the 2002 IEEE International Conference on Robotics & Automation, pp.720-725, May 2002.
    [59] T. Isoda, P. Chen, T. Toyota, and T. Hirano, "Omni-directional mobile robot for autonomic offroad running,” 6th IEEE International Workshop on Robot and Human Communication, pp.64-69, September 1997.
    [60] J. H. Lee, B. K. Kim, T. Tanikawa, and K. Ohba, "Command system and motion control for caster-type omni-directional mobile robot," Intelligent Robots and Systems, pp.232-237, August 2005.
    [61] K. Watanabe, Y. Shiraishi, S. G. Tzafestas, J. Tang, and T. Fukuda, "Feedback control of an omnidirectional autonomous platform for mobile service robots," Journal of Intelligent and Robotic Systems, vol.22, pp.315-330, June 1998.
    [62] I. E. Paromtchik, H. Asama, T. Fujii, and I. Endo, "A control system for an omnidirectional mobile robot," Proceedings of the 1999 IEEE International Conference on Control Applications, pp.1123-1128, August 1999.
    [63] R. L. Williams, B. E. Carter, P. Gallina, and G. Rosati, "Dynamic model with slip for wheeled omnidirectional robots, " IEEE Transactions on Robotics and Automation, vol.18, pp.285-293, June 2002.
    [64] Y. Liu, J. J. Zhu, R. L. Williams, and J. Wu, "Omni-directional mobile robot controller design by trajectory linearization," Robotics and Autonomous Systems 56, pp.461–479, January 2008.
    [65] Y.P. Leow, K. H. Low, and W. K. Loh, "Kinematic modeling and analysis of mobile robots with omni-directional wheels," Seventh lnternational Conference on Control, Automation, Robotics And Vision (lCARCV’O2), pp.820-825, December 2002.
    [66] 翁義清,全向移動機器人之路徑追蹤,國立成功大學工程科學系碩士論文, 2007.
    [67] C. L. Hwang, and C. Y. Shih, "A distributed active-vision network-space approach for the navigation of a car-like wheeled robot," IEEE Transactions on Industrial electronics, vol.56, pp.846-855, March 2009.
    [68] J. Jang, S. Han, H. Kim, C. K. Ahn, and W. H. Kwon, "Rapid control prototyping for robot soccer," Cambridge Journals Online - Robotica, vol.27, pp.1091-1102, December 2009.
    [69] A. H. Pratomo et al., "Position and obstacle avoidance algorithm in robot soccer," Journal of Computer Science, vol.6, pp.173-179, December 2010.
    [70] T. Yoshimi et al., "Development of a person following robot with vision based target detection," IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.5286-5291, October 2006.
    [71] Y. Wang, S. Fang, Y. Cao, and H. Sun, "Image-based exploration obstacle avoidance for mobile robot," Chinese Control and Decision Conference, pp.3019-3023, July 2009.
    [72] D. Nagahara, and S. Takahashi, "Mobile robot control based on information of the scanning laser range sensor," The 11th IEEE International Workshop on Advanced Motion Control, pp.258-261, May 2010.
    [73] Y. C. Chang, Y. Y. Lwin, and Y. Yamamoto, "Sensor-based trajectory planning strategy for non-holonomic mobile robot with laser range sensors," IEEE International Symposium on Industrial Electronics, pp.1755-1760, December 2009.
    [74] G. Fu, P. Corradi, A. Menciassi, and P. Dario, "An integrated triangulation laser scanner for obstacle detection of miniature mobile robots in indoor environment," IEEE/ASME Transactions on Mechatronics, vol.16, pp.778-783, August 2011.
    [75] S. Stiene, and J. Hertzberg, "Virtual range scan for avoiding 3D obstacles using 2D tools," International Conference on Advanced Robotics, pp.1-6, June 2009.
    [76] Y. S. Chen, and J. G. Juang, "Intelligent obstacle avoidance control strategy for wheeled mobile robot," ICROS-SICE International Joint Conference, pp.3199-3204, August 2009.
    [77] LabVIEW中的 Voronoi Graph圖片示意, http://www.ni.com/white-paper/8255/zht
    [78] Potential function, Lennard-Jones, J. E. (1924), "On the Determination of Molecular Fields", Proc. R. Soc. Lond. A 106 (738): 463–477.

    下載圖示 校內:2016-08-05公開
    校外:2016-08-05公開
    QR CODE