| 研究生: |
許晨薇 Hsu, Chen-Wei |
|---|---|
| 論文名稱: |
應用多目標粒子群演算法於多個橢圓柱的隊形最佳化 Implementation of Particle Swarm Optimization Algorithm for Optimizing Elliptic Cylinders in Formation |
| 指導教授: |
楊世安
Yang, Shih-An |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 162 |
| 中文關鍵詞: | 粒子群演算法 、多目標最佳化 、橢圓 、自動化 |
| 外文關鍵詞: | MOPSO, multiobjective, ellipse, automation, ANSYS, FLUENT, C# |
| 相關次數: | 點閱:77 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用單目標與多目標粒子群演算法探討於二維層流流場中,多個橢圓柱的隊形在不同雷諾數下最佳化之問題,首先介紹粒子群演算法(Particle Swarm Optimization),將多目標粒子群演算法(MOPSO)與計算流體力學軟體ANSYS FLUENT結合,計算不同橢圓隊形所受到的阻力,經由多目標粒子群演算法求出最佳化的隊形。同時亦比較單目標與多目標粒子群演算法求出結果之差異,並以此最佳化隊形以及本研究撰寫出的程式架構,做為未來探討鳥類飛行隊伍的研究方法。
本研究以Microsoft Visual Studio 2008中的C#為程式架構的主體,以其撰寫粒子群演算法,並利用C#自動操控繪圖軟體Rhino建模,進行橢圓位置移動改變隊形之後,再將檔案匯入ANSYS FLUENT計算,利用計算出來的結果回傳至C#程式,作為修正下一次計算隊形的參考。
本研究目的在於研究自動最佳化計算的主要架構,使其可以利用來演算不同物體的最佳化隊形,只需要建立一開始的模型,經由程式自動化迭代計算之後,即可得到最小阻力的隊形。將來亦可將橢圓模型置換成鳥類、船等物體,利用隊形減少阻力節省效能,作為軍事或長途航行之用途,達到省時省能的效果。
This research uses the single objective particle swarm optimization (PSO) and multiobjective PSO (MOPSO) to implement the optimization for elliptic cylinders in formation in the two-dimesional laminar flow. We start from introducing PSO and MOPSO, and combine MOPSO with ANSYS FLUENT to calculate different formations. Finally we obtain an optimizing formation and also discuss the difference of results between the PSO and MOPSO. In the future, we will take this program to research the V-formation of birds.
The framewok of program is written in Microsoft Visual Studio 2008 C#, including PSO algorithm, changing the positons of elliptic cylinders, importing the files to ANSYS FLUENT and returning the data of forces back to PSO in order to correct the next calculation.
The main pupose to the research is to automate the optimizing framework of PSO, Rino and ANSYS FLUENT. To study different kinds of bodies, we only have to build an initial model in this program. If we obtain the formation of birds or ships, our research can use the optimizing formation to reduce drag force. We believe it can achieve decreasing fuel consumption in application of military or long-distance navigation.
1. Anatol Roshko, ON THE DEVELOPMENT OF TURBULENT WAKES FROM VORTEX STREETS, J. Aerosp, Sci. 22, 124-132, 1955
2. Bhanoday Reddy, Rainel Gonzalez Brioso, “Automated and Generic Finite Element Analysis for Industrial Robot Design,” 2011
3. Carlo R. Raquel, Prospero C. Naval, Jr., “ An effective Use of Crowding Distance in Multiobjective Particle Swarm Optimization,” Proceedings of the 2005 Conference on Genetic and Evolutionary Computation,2005 , pp.257-264, Washington D.C., U.S.A., June 2005, ACM Press, New York
4. Carlos A. Coello Coello, Gregorio Toscano Pulido, and Maximino Salazar Lechuga, “Handling Multiple Objectives With Particle Swarm Optimization,” IEEE Transactions on Evolutionary Computation, Vol.8, No.3, June 2004
5. Carlos Alberto Gonzalez Pico, “Dynamic Scheduling of Computer Tasks Using Genetic Algorithms,” Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 829-833, June 26~July 2, 1994
6. Carlos M. Fonseca and Peter J. Fleming, “Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization,” Fifth Int Conf. Genetic Algorithms, San Mateo, CA, 1993, pp. 416-23
7. D.A. Jones and D.B. Clarke, “Simulation of Flow Past a Sphere using the Fluent Code,” Defence Science and Technology Organisation, 2008
8. D.Castiglia, S. Balabani, G. Papadakis, “An Experimental and Numerical Study of The Flow Past Elliptic Cylinder Arrays,” Journal of Mechanical Engineering, 2001.
9. Dirk Büche, Nicol N. Schraudolph, and Petros Koumoutsakos, “Accelerating Evolutionary Algorithms With Gaussian Process Fitness Function Models,” IEEE Transactions on Systems, Man and Cybernetics—PART C: Applications and Reviews, Vol. 35, No. 2, May 2005
10. Dröge, Marc Theodoor, “Cartesian grid methods for turbulent flow simulation in complex geometries,” p.p. 79-105, 2007
11. E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary algorithms : A comparative case study,” Parallel Problem Solving From Nature, Germany, pp.292-301, 1998
12. E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary algorithms: Empirical results,” Evol. Comput, V8, N2, pp.173-195, 2000
13. E. Zitzler, M. Laumanns, L. Thiele, “SPEA2: Improving the strength Pareto evolutionary algorithms,” Technical Report TIK-103, Computer Engineering and Network Laboratory(TIK), May 2001
14. Fourie, P. C., and Groenwold A. A., “The Particle Swarm Optimization Algorithm in Size and Shape Optimization,” Structural and Mutidisciplinary Opitimization, Vol. 23, No. 4, pp.259-267, 2002
15. G. P. Warren, W. K. Anderson, J. L. Thomas, “Grid Convergence for Adaptive Methods,” Computational Fluid Dynamics Conference, 1991
16. Gies, D., Rahmat-Samii, Y., “Reconfigurable array design using parallel particle swarm optimization,” IEEE AP-S Symposium Digests, pp. 177-180, June 22-27, 2003
17. H. S. Ribner, “The Generation of Sound by turbulent jets,” In Advences in Applied Mathematics, 1964
18. Henderson, ”Details of the drag curve near the onset of vortex shedding,” Phys. Fluids,vol. 7, p.p. 2102–2104,1995
19. Hu, X., and Eberhart, R. C., “Adaptive Particle Swarm Optimization: Detection and Response to Dynamic System,” Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1666-1670, 2002
20. J. D. Knowles and D. W. Corne, “Approximating the nondominated front using the Pareto archived evolution strategy,” Evol. Comput., Vol.8, pp. 149-172, 2000
21. J.D. Schaffer, “Some experiments in machine learning using vector evaluated genetic algorithm,” Ph. D. thesis, Vanderbilt University, Nashville, TN, 1984
22. Jeremy P. Dittmer, C. Greg Jensen, “Mesh Optimization Using a Genetic Algorithm to Control Mesh Creation Parameters,” Computer-Aided Design & Applications, Vol. 3, Issue 6, 2006
23. Johan Akerholm, Bjorn Jernstrom, Kenneth Eriksson, “Automatic Design Optimization using Fluent and Epogy Softwares in Linux Cluster Environment,” 2003
24. K. Deb, Amrit Pratap, Sameer Agarwal and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, Vol.6, No. 2, April 2002
25. K.E. Parsopoulos and M. N. Vrahatis, “Multiobjective Optimization Using Parallel Vector Evaluated Particle Swarm Optimization,” Proceedings of the IASTED International Conference on Artifical Intelligence and Application(AIA), ACTA Press, Vol.2, pp. 823-828, 2004
26. K.E. Parsopoulos and M. N. Vrahatis, “Particle Swarm Optimization Method in Multiobjective Problems,” Proceeding of the ACM 2002 Symposium on Applied Computing, pp. 603-607, 2002
27. Kennedy, J., Eberhart, R, “Particle Swarm Optimization.” IEEE, 1995
28. Kirkpatrick S., Gelatt C. D., Vecchi M. P., “Optimization by Simulated Annealing,” Science 220(4598): 671-680, 1983
29. Lam Thu Bui, “Multi-Objective Optimization in Computational Intelligence : Theory and Practice,” Springer, 2008
30. Laura and Mihai Oltean,”What Else is the Evolution of PSO Telling Us? ,” Journal of Artificial Evolutiona and Application, Nov. 2007
31. Margarita Reyes-Sierra and Carlos A. Coello Coello, “Multi-Objective Particle Swarm Optimizers : A Survey of the State-of-the-Art, ”International Journal of Computational Intelligence Research, Vol.2, No.3, 2006, pp.287-308
32. Mark Thompson, Kerry Hourigan, John Sheridan, “Three-Dimensional Instabilities in the Wake of a Circular Cylinder,” Experimental Thermal and Fluid Science, Vol. 12, Issue 2, pp. 190-196, Feb 1996
33. Michael Emmerich, Kyriakos Giannakoglou, Boris Naujoks, “Single- and Multi- objective Evolutionary Optimization Assisted by Gaussian Random Field Metamodels,” IEEE Transactions on Evolutionary Computation, Vol. 10, pp. 421-439, Aug. 2006
34. MING-HSUN WU, CHIH-YUNG WEN, RUEY-HOR YEN, “Experimental and numerical study of the separation angle for flow around a circular cylinder at low Reynolds number,” J. Fluid Mech, Vol. 515, pp. 233-260, 2004
35. Omar Al Jadaan, Lakishimi Rajamani, C.R.Rao, “Non-dominated ranked Genetic Algorithm for solving multi-objective optimization : NRGA.”Journal of Theoretical and Applied Information Technology, 2008
36. Passaro A. and Starita A.,”Particle Swarm Optimization for Multimodal Functions : A Clustering Approach,”Journal of Artificial Evolution and Application, Feb. 2008
37. Praveen C., R. Duvigneau, “Low cost PSO metamodels and inexact pre-evaluation: Application to aerodynamic shape design,” Comput. Methods Appl. Mech. Engrg. 198(2009)
38. R. Mittal, S. Balachandar, “Direct Numerical Simulation of Flow Past Elliptic Cylinders,” Journal of Computational Physics, No.124, p.p. 351-367, 1996
39. Rania Hassan, Babak Cohanim, Olivier de Weck and Gerhard Venter, “A comparison of particles swarm optimization and the genetic algorithm,” Proceedings of the First AIAA Multidisciplinary Design Optimization Specialist Conference, pp. 18-21, 2005
40. S. Kalyana, K.Arul, S. Vengadesan, “Effect of Axis Ratio on Fluid Flow Aroud An Elliptic Cylinder Using Immersed Bunday Method,” Fluid Mechanics and Fluid Power, Dec 2010
41. S.A. Johnson, M.C.Thompson, K. Hourigan, “Flow Past Elliptical Cylinders at Low Reynolds Numbers,” Australasian Fluid Mechanics Conference, Dec 2001
42. Shi, Y., and Eberhart, R. C., “Parameter Selection in Particle Swarm Optimizzation,” V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben (eds), Lecture Notes in Computer Science, 1447, Evolutionary Programming VII, Springer, Berlin, pp.591-600, 1998
43. Srinivas M. and Patnaik L.M., “Adaptive probabilities of crossover and mutation in genetic algorithms,” IEEE Transactions on System, Man and Cybernetics, Vol. 24, no.4, pp.656-667, 1994
44. Stefano Cagnoni, “Particle Swarms: The Second Decade,” Hindawi, 2008
45. Subhankar Sen, Sanjay Mittal, Gautam Biswas, “Steady Separated Flow Past a Circular Cylinder at Low Reynolds Numbers,” J. Fluid Mech., vol. 620, p.p. 89-119, 2009
46. T. J. Barth, D. Jespersen, “The Design and Application of Upwind Schemes on Unstructured Meshes,” Technical Report AIAA-89-0366, 1989
47. Ting and Chuan Kang, “On the mean convergence time of multiparent genetic algorithms without selection,” Advance in Artificial Life, pp.403-412, 2005
48. W. Anderson, D. L. Bonhus, “An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids,” Computers Fluids, 23(1), p.p. 1-21, 1994
49. W. F. Lindsey, “ Drag of cylinders of simple shapes,” Naca-Report, No.619, 1938
50. Yogini Patel, “Numerical Investigation of Flow Past a Circular Cylinder and in a Staggered Tube Bundle Using Various Turbulence Models,” Lappeenranta University, Aug 2010
51. Zakir Faruquee, David S-K. Ting, Amir Fartaj, “The Effect of Axis Ratio on Laminar Fluid Flow Around An Elliptical Cylinder,” International Jornal of Heat and Fluid Flow, No.28, p.p. 1178-1189, 2007
52. 莊玟珊,”PSO-SA混合搜尋法與其他結構最佳化”,國立中央大學土木工程研究所,碩士論文(2007)
53. 劉皓翔,” 應用多目標粒子群演算法於船舶球形艏最佳化設計之研究”,國立成功大學系統及船舶機電工程研究所,碩士論文(2012)