簡易檢索 / 詳目顯示

研究生: 許晨薇
Hsu, Chen-Wei
論文名稱: 應用多目標粒子群演算法於多個橢圓柱的隊形最佳化
Implementation of Particle Swarm Optimization Algorithm for Optimizing Elliptic Cylinders in Formation
指導教授: 楊世安
Yang, Shih-An
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 162
中文關鍵詞: 粒子群演算法多目標最佳化橢圓自動化
外文關鍵詞: MOPSO, multiobjective, ellipse, automation, ANSYS, FLUENT, C#
相關次數: 點閱:77下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文利用單目標與多目標粒子群演算法探討於二維層流流場中,多個橢圓柱的隊形在不同雷諾數下最佳化之問題,首先介紹粒子群演算法(Particle Swarm Optimization),將多目標粒子群演算法(MOPSO)與計算流體力學軟體ANSYS FLUENT結合,計算不同橢圓隊形所受到的阻力,經由多目標粒子群演算法求出最佳化的隊形。同時亦比較單目標與多目標粒子群演算法求出結果之差異,並以此最佳化隊形以及本研究撰寫出的程式架構,做為未來探討鳥類飛行隊伍的研究方法。
      本研究以Microsoft Visual Studio 2008中的C#為程式架構的主體,以其撰寫粒子群演算法,並利用C#自動操控繪圖軟體Rhino建模,進行橢圓位置移動改變隊形之後,再將檔案匯入ANSYS FLUENT計算,利用計算出來的結果回傳至C#程式,作為修正下一次計算隊形的參考。
      本研究目的在於研究自動最佳化計算的主要架構,使其可以利用來演算不同物體的最佳化隊形,只需要建立一開始的模型,經由程式自動化迭代計算之後,即可得到最小阻力的隊形。將來亦可將橢圓模型置換成鳥類、船等物體,利用隊形減少阻力節省效能,作為軍事或長途航行之用途,達到省時省能的效果。

      This research uses the single objective particle swarm optimization (PSO) and multiobjective PSO (MOPSO) to implement the optimization for elliptic cylinders in formation in the two-dimesional laminar flow. We start from introducing PSO and MOPSO, and combine MOPSO with ANSYS FLUENT to calculate different formations. Finally we obtain an optimizing formation and also discuss the difference of results between the PSO and MOPSO. In the future, we will take this program to research the V-formation of birds.
      The framewok of program is written in Microsoft Visual Studio 2008 C#, including PSO algorithm, changing the positons of elliptic cylinders, importing the files to ANSYS FLUENT and returning the data of forces back to PSO in order to correct the next calculation.
      The main pupose to the research is to automate the optimizing framework of PSO, Rino and ANSYS FLUENT. To study different kinds of bodies, we only have to build an initial model in this program. If we obtain the formation of birds or ships, our research can use the optimizing formation to reduce drag force. We believe it can achieve decreasing fuel consumption in application of military or long-distance navigation.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 符號 XIV 第一章 緒論 1 1-1 研究背景與目的 1 1-2 文獻回顧 2 1-3 論文架構 3 第二章 粒子群演算法介紹 5 2-1 最佳化演算法之發展 5 2-2 單目標最佳化演算法 6 2-2-1 粒子群演算法(Particle Swarm Optimization Algorithm,PSO) 6 2-2-2 單目標演算法計算之一:不同函數比較 14 2-2-3 單目標演算法計算之二:解的穩定性 19 2-3 多目標最佳化演算法 23 2-3-1 多目標粒子群演算法(MOPSO Algorithm) 26 2-3-2 MOPSO-CD (Crowding Distance) 28 2-3-3 Crowding Distance與突變 31 第三章 數值模擬方法 38 3-1 模型與邊界條件 38 3-2 網格生成 40 3-2-1 初步網格劃分 41 3-2-2 自適應網格(Adapting the Mesh) 44 3-3 阻力計算─ANSYS FLUENT 47 第四章 自動化設計架構 62 4-1 程式設計架構與流程 62 4-2 Rhinoceros 4.0 65 4-3 ANSYS 67 4-3-1 初期前置處理 67 4-3-2 後期前置處理 70 4-4 Microsoft Visual Studio 2008 C# 73 第五章 橢圓柱隊形最佳化結果與討論 78 5-1 單目標粒子群應用於橢圓柱隊形最佳化 78 5-1-1 單目標PSO相關參數調整 78 5-1-2 長寬比2:1橢圓柱隊形單目標最佳化後阻力分析 82 5-1-2-1雷諾數50橢圓柱隊形單目標最佳化結果 83 5-1-2-2雷諾數100橢圓柱隊形單目標最佳化結果 85 5-1-2-3雷諾數200橢圓柱隊形單目標最佳化結果 88 5-1-2-4橢圓柱隊形單目標最佳化綜合討論 90 5-2 多目標粒子群應用於橢圓柱隊形最佳化 94 5-2-1 多目標PSO流程 94 5-2-2 長寬比2:1橢圓柱隊形雙目標最佳化後阻力分析 98 5-2-2-1雷諾數100橢圓柱隊形雙目標最佳化結果 100 5-2-2-2雷諾數200橢圓柱隊形雙目標最佳化結果 105 5-2-2-3橢圓柱隊形雙目標最佳化綜合討論 110 5-3 單目標與雙目標計算結果綜合討論 112 第六章 結論與未來展望 115 6-1 結論 115 6-2 研究過程中曾面臨的困難與解決方法 116 6-3 未來展望 118 參考文獻 120 附錄一:單目標PSO程式碼 127 附錄二:MOPSO-CD程式碼 138 附錄三:ANSYS Journal程式碼 160

    1. Anatol Roshko, ON THE DEVELOPMENT OF TURBULENT WAKES FROM VORTEX STREETS, J. Aerosp, Sci. 22, 124-132, 1955
    2. Bhanoday Reddy, Rainel Gonzalez Brioso, “Automated and Generic Finite Element Analysis for Industrial Robot Design,” 2011
    3. Carlo R. Raquel, Prospero C. Naval, Jr., “ An effective Use of Crowding Distance in Multiobjective Particle Swarm Optimization,” Proceedings of the 2005 Conference on Genetic and Evolutionary Computation,2005 , pp.257-264, Washington D.C., U.S.A., June 2005, ACM Press, New York
    4. Carlos A. Coello Coello, Gregorio Toscano Pulido, and Maximino Salazar Lechuga, “Handling Multiple Objectives With Particle Swarm Optimization,” IEEE Transactions on Evolutionary Computation, Vol.8, No.3, June 2004
    5. Carlos Alberto Gonzalez Pico, “Dynamic Scheduling of Computer Tasks Using Genetic Algorithms,” Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 829-833, June 26~July 2, 1994
    6. Carlos M. Fonseca and Peter J. Fleming, “Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization,” Fifth Int Conf. Genetic Algorithms, San Mateo, CA, 1993, pp. 416-23
    7. D.A. Jones and D.B. Clarke, “Simulation of Flow Past a Sphere using the Fluent Code,” Defence Science and Technology Organisation, 2008
    8. D.Castiglia, S. Balabani, G. Papadakis, “An Experimental and Numerical Study of The Flow Past Elliptic Cylinder Arrays,” Journal of Mechanical Engineering, 2001.
    9. Dirk Büche, Nicol N. Schraudolph, and Petros Koumoutsakos, “Accelerating Evolutionary Algorithms With Gaussian Process Fitness Function Models,” IEEE Transactions on Systems, Man and Cybernetics—PART C: Applications and Reviews, Vol. 35, No. 2, May 2005
    10. Dröge, Marc Theodoor, “Cartesian grid methods for turbulent flow simulation in complex geometries,” p.p. 79-105, 2007
    11. E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary algorithms : A comparative case study,” Parallel Problem Solving From Nature, Germany, pp.292-301, 1998
    12. E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary algorithms: Empirical results,” Evol. Comput, V8, N2, pp.173-195, 2000
    13. E. Zitzler, M. Laumanns, L. Thiele, “SPEA2: Improving the strength Pareto evolutionary algorithms,” Technical Report TIK-103, Computer Engineering and Network Laboratory(TIK), May 2001
    14. Fourie, P. C., and Groenwold A. A., “The Particle Swarm Optimization Algorithm in Size and Shape Optimization,” Structural and Mutidisciplinary Opitimization, Vol. 23, No. 4, pp.259-267, 2002
    15. G. P. Warren, W. K. Anderson, J. L. Thomas, “Grid Convergence for Adaptive Methods,” Computational Fluid Dynamics Conference, 1991
    16. Gies, D., Rahmat-Samii, Y., “Reconfigurable array design using parallel particle swarm optimization,” IEEE AP-S Symposium Digests, pp. 177-180, June 22-27, 2003
    17. H. S. Ribner, “The Generation of Sound by turbulent jets,” In Advences in Applied Mathematics, 1964
    18. Henderson, ”Details of the drag curve near the onset of vortex shedding,” Phys. Fluids,vol. 7, p.p. 2102–2104,1995
    19. Hu, X., and Eberhart, R. C., “Adaptive Particle Swarm Optimization: Detection and Response to Dynamic System,” Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1666-1670, 2002
    20. J. D. Knowles and D. W. Corne, “Approximating the nondominated front using the Pareto archived evolution strategy,” Evol. Comput., Vol.8, pp. 149-172, 2000
    21. J.D. Schaffer, “Some experiments in machine learning using vector evaluated genetic algorithm,” Ph. D. thesis, Vanderbilt University, Nashville, TN, 1984
    22. Jeremy P. Dittmer, C. Greg Jensen, “Mesh Optimization Using a Genetic Algorithm to Control Mesh Creation Parameters,” Computer-Aided Design & Applications, Vol. 3, Issue 6, 2006
    23. Johan Akerholm, Bjorn Jernstrom, Kenneth Eriksson, “Automatic Design Optimization using Fluent and Epogy Softwares in Linux Cluster Environment,” 2003
    24. K. Deb, Amrit Pratap, Sameer Agarwal and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, Vol.6, No. 2, April 2002
    25. K.E. Parsopoulos and M. N. Vrahatis, “Multiobjective Optimization Using Parallel Vector Evaluated Particle Swarm Optimization,” Proceedings of the IASTED International Conference on Artifical Intelligence and Application(AIA), ACTA Press, Vol.2, pp. 823-828, 2004
    26. K.E. Parsopoulos and M. N. Vrahatis, “Particle Swarm Optimization Method in Multiobjective Problems,” Proceeding of the ACM 2002 Symposium on Applied Computing, pp. 603-607, 2002
    27. Kennedy, J., Eberhart, R, “Particle Swarm Optimization.” IEEE, 1995
    28. Kirkpatrick S., Gelatt C. D., Vecchi M. P., “Optimization by Simulated Annealing,” Science 220(4598): 671-680, 1983
    29. Lam Thu Bui, “Multi-Objective Optimization in Computational Intelligence : Theory and Practice,” Springer, 2008
    30. Laura and Mihai Oltean,”What Else is the Evolution of PSO Telling Us? ,” Journal of Artificial Evolutiona and Application, Nov. 2007
    31. Margarita Reyes-Sierra and Carlos A. Coello Coello, “Multi-Objective Particle Swarm Optimizers : A Survey of the State-of-the-Art, ”International Journal of Computational Intelligence Research, Vol.2, No.3, 2006, pp.287-308
    32. Mark Thompson, Kerry Hourigan, John Sheridan, “Three-Dimensional Instabilities in the Wake of a Circular Cylinder,” Experimental Thermal and Fluid Science, Vol. 12, Issue 2, pp. 190-196, Feb 1996
    33. Michael Emmerich, Kyriakos Giannakoglou, Boris Naujoks, “Single- and Multi- objective Evolutionary Optimization Assisted by Gaussian Random Field Metamodels,” IEEE Transactions on Evolutionary Computation, Vol. 10, pp. 421-439, Aug. 2006
    34. MING-HSUN WU, CHIH-YUNG WEN, RUEY-HOR YEN, “Experimental and numerical study of the separation angle for flow around a circular cylinder at low Reynolds number,” J. Fluid Mech, Vol. 515, pp. 233-260, 2004
    35. Omar Al Jadaan, Lakishimi Rajamani, C.R.Rao, “Non-dominated ranked Genetic Algorithm for solving multi-objective optimization : NRGA.”Journal of Theoretical and Applied Information Technology, 2008
    36. Passaro A. and Starita A.,”Particle Swarm Optimization for Multimodal Functions : A Clustering Approach,”Journal of Artificial Evolution and Application, Feb. 2008
    37. Praveen C., R. Duvigneau, “Low cost PSO metamodels and inexact pre-evaluation: Application to aerodynamic shape design,” Comput. Methods Appl. Mech. Engrg. 198(2009)
    38. R. Mittal, S. Balachandar, “Direct Numerical Simulation of Flow Past Elliptic Cylinders,” Journal of Computational Physics, No.124, p.p. 351-367, 1996
    39. Rania Hassan, Babak Cohanim, Olivier de Weck and Gerhard Venter, “A comparison of particles swarm optimization and the genetic algorithm,” Proceedings of the First AIAA Multidisciplinary Design Optimization Specialist Conference, pp. 18-21, 2005
    40. S. Kalyana, K.Arul, S. Vengadesan, “Effect of Axis Ratio on Fluid Flow Aroud An Elliptic Cylinder Using Immersed Bunday Method,” Fluid Mechanics and Fluid Power, Dec 2010
    41. S.A. Johnson, M.C.Thompson, K. Hourigan, “Flow Past Elliptical Cylinders at Low Reynolds Numbers,” Australasian Fluid Mechanics Conference, Dec 2001
    42. Shi, Y., and Eberhart, R. C., “Parameter Selection in Particle Swarm Optimizzation,” V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben (eds), Lecture Notes in Computer Science, 1447, Evolutionary Programming VII, Springer, Berlin, pp.591-600, 1998
    43. Srinivas M. and Patnaik L.M., “Adaptive probabilities of crossover and mutation in genetic algorithms,” IEEE Transactions on System, Man and Cybernetics, Vol. 24, no.4, pp.656-667, 1994
    44. Stefano Cagnoni, “Particle Swarms: The Second Decade,” Hindawi, 2008
    45. Subhankar Sen, Sanjay Mittal, Gautam Biswas, “Steady Separated Flow Past a Circular Cylinder at Low Reynolds Numbers,” J. Fluid Mech., vol. 620, p.p. 89-119, 2009
    46. T. J. Barth, D. Jespersen, “The Design and Application of Upwind Schemes on Unstructured Meshes,” Technical Report AIAA-89-0366, 1989
    47. Ting and Chuan Kang, “On the mean convergence time of multiparent genetic algorithms without selection,” Advance in Artificial Life, pp.403-412, 2005
    48. W. Anderson, D. L. Bonhus, “An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids,” Computers Fluids, 23(1), p.p. 1-21, 1994
    49. W. F. Lindsey, “ Drag of cylinders of simple shapes,” Naca-Report, No.619, 1938
    50. Yogini Patel, “Numerical Investigation of Flow Past a Circular Cylinder and in a Staggered Tube Bundle Using Various Turbulence Models,” Lappeenranta University, Aug 2010
    51. Zakir Faruquee, David S-K. Ting, Amir Fartaj, “The Effect of Axis Ratio on Laminar Fluid Flow Around An Elliptical Cylinder,” International Jornal of Heat and Fluid Flow, No.28, p.p. 1178-1189, 2007
    52. 莊玟珊,”PSO-SA混合搜尋法與其他結構最佳化”,國立中央大學土木工程研究所,碩士論文(2007)
    53. 劉皓翔,” 應用多目標粒子群演算法於船舶球形艏最佳化設計之研究”,國立成功大學系統及船舶機電工程研究所,碩士論文(2012)

    下載圖示 校內:2016-08-08公開
    校外:2018-08-08公開
    QR CODE