簡易檢索 / 詳目顯示

研究生: 吳柏融
Wu, Po-Jung
論文名稱: 應用計算流體力學進行三維氣相聚丙烯反應器之溫度異常分析
Analysis of Temperature Deviation in a Three-dimensional Gas-phase Polypropylene Reactor Based on Computational Fluid Dynamics
指導教授: 李瑞元
Lee, Jui-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 101
中文關鍵詞: 聚丙烯氣相聚合計算流體力學熱點生成溫度異常
外文關鍵詞: Polypropylene, Gas-phase polymerization, CFD, Hot spot formation, Temperature deviation
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚丙烯(Polypropylene, PP)Horizone氣相製程中,第一反應器前段區域常因聚合反應劇烈與熱移除效率不足,導致局部溫度突升與熱點生成,進而影響反應穩定性與產品品質。本研究針對此問題進行計算流體力學(Computational Fluid Dynamics, CFD)模擬與分析,建構具備反應熱釋放機制之三維多重參考系(Multiple Reference Frame, MRF)模型,並採用體積分率模型(Volume of Fluid, VOF)與離散相模型(Discrete Phase Model, DPM)模擬反應器中相間混合行為與驟冷液以液滴噴灑入料形式。聚合反應部分則透過自定義函數(User-Defined Functions, UDFs)引入以蒸發速率為依據之兩種反應熱釋放條件,分別為僅考慮液滴於計算域中蒸發速率的寬鬆條件,與基於真實反應中反應物接觸PP相中的觸媒後進行反應,而加入液滴於PP相中蒸發方可釋放反應熱的嚴苛條件,模擬不同放熱門檻對反應器流場分布與溫度場的影響。模擬結果顯示,驟冷液進料口下方兩相交界處為蒸發與放熱最旺盛區域,亦為熱點最易形成位置。寬鬆條件下易引發連鎖效應,造成溫度失控;而嚴苛條件則可抑制局部熱累積,提升系統穩定性。進一步對驟冷液進料流量進行敏感度分析顯示,減半雖降低產率但可穩定溫度場,倍增則提升反應速率卻易產生溫度異常。因此,本研究以驟冷液進料流量倍增之操作條件作為基礎,針對攪拌葉片轉速、循環氣進料流量與PP初始體積分率進行敏感度分析,結果顯示可藉由提升氣體擾動強度與調控有效蒸發面積,有效改善熱場分布,實現溫度穩定與產能提升之雙重目標。本研究成果除可作為實廠操作參數優化之依據,亦可延伸應用於其他高放熱氣相聚合反應器之CFD模擬與反應熱控制之操作策略。未來可進一步導入反應動力學、催化劑與單體進料機制,並進行完整暫態模擬,以提升模型之準確性與預測能力。

    In the Horizone gas-phase polypropylene (PP) process, localized temperature spikes and hot spot formation often occur in the front section of the first reactor due to intense polymerization and insufficient heat removal. This study conducts Computational Fluid Dynamics (CFD) simulations by constructing a three-dimensional Multiple Reference Frame (MRF) model incorporating heat release mechanisms. The Volume of Fluid (VOF) and Discrete Phase Model (DPM) were employed to simulate phase interactions and droplet-based quench liquid injection. Polymerization heat was introduced via User-Defined Functions (UDFs), with evaporation rate-dependent release under two threshold schemes: loose and strict. Results indicate that heat accumulation is most severe near the quench inlet and phase interface. The loose condition triggers runaway heating, whereas the strict condition stabilizes the temperature field. Sensitivity analysis of quench flow shows that halving the flow improves stability but reduces yield, while doubling enhances productivity but risks overheating. Further adjustments to stirrer speed, recycle gas rate, and initial PP volume fraction demonstrate that enhancing gas turbulence and controlling effective evaporation area can simultaneously stabilize temperature and increase output.

    摘要 I 誌謝 XVI 目錄 XVII 表目錄 XIX 圖目錄 XX 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 研究架構 3 第二章 文獻回顧 5 2.1 聚丙烯 5 2.2 聚丙烯製程 5 2.3 聚丙烯Horizone氣相製程 6 2.4 氣相聚合反應CFD數值分析 9 2.5 計算流體力學MRF流場數值分析 10 2.6 溫度失控與熱點生成問題之應對策略 10 第三章 物理模式 12 3.1 基本假設 12 3.2 統御方程式(Governing Equation) 15 3.2.1 連續方程式(Continuity Equation) 15 3.2.2 動量方程式(Momentum Equation) 16 3.2.3 能量方程式(Energy Conservation Equation) 16 3.3 紊流方程式(Turbulence Equation) 17 3.4 離散相模型(Discrete Phase Model) 19 3.4.1 粒子運動方程式(Equations of Motion for Particles) 19 3.4.2 粒子能量與質量傳遞(Laws for Heat and Mass Exchange) 20 3.5 三維幾何模型建立與網格劃分 21 3.5.1 三維幾何模型建立 22 3.5.2 網格建立 25 3.6 初始條件、邊界條件與物質參數設定 26 3.6.1 初始條件 26 3.6.2 邊界條件 26 3.6.3 物質參數設定 27 第四章 數值方法 29 4.1 有限體積法(Finite Volume Method) 29 4.2 迎風格式(Upwind Scheme) 30 4.3 壓力基求解器(Pressure-Based Solver) 30 4.4 耦合法(Coupled Algorithm) 30 4.5 自定義函數(User-Defined Functions, UDFs) 32 第五章 結果與討論 33 5.1 三維氣相聚丙烯反應器模型模擬結果 33 5.2 驟冷液進料流量敏感度分析 40 5.2.1 驟冷液流量減半模擬結果 40 5.2.2 驟冷液流量兩倍模擬結果 46 5.3 操作變數敏感度分析 53 5.3.1 攪拌葉片轉速兩倍模擬結果 53 5.3.2 循環氣進料流量兩倍模擬結果 54 5.3.3 PP初始體積分率0.25與0.75模擬結果 55 第六章 結論與未來工作 68 6.1 結論 68 6.2 未來工作 70 參考文獻 71 附錄一 寬鬆釋放反應熱條件程式碼 75 附錄二 嚴苛釋放反應熱條件程式碼 77

    [1] Jubinville, D., Esmizadeh, E., Saikrishnan, S., Tzoganakis, C., & Mekonnen, T. (2020). A comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications. Sustainable materials and technologies, 25, e00188.
    [2] Schneiderbauer, S., Puttinger, S., Pirker, S., Aguayo, P., & Kanellopoulos, V. (2015). CFD modeling and simulation of industrial scale olefin polymerization fluidized bed reactors. Chemical Engineering Journal, 264, 99-112.
    [3] Abbasi, M. R., Shamiri, A., & Hussain, M. A. (2019). A review on modeling and control of olefin polymerization in fluidized-bed reactors. Reviews in Chemical Engineering, 35(3), 311-333.
    [4] Cui, J., Ni, L., Jiang, J., Pan, Y., Wu, H., & Chen, Q. (2019). Computational fluid dynamics simulation of thermal runaway reaction of styrene polymerization. Organic Process Research & Development, 23(3), 389-396.
    [5] Sáez-Pardo, F., Giner-Sanz, J. J., García-Gabaldón, M., & Pérez-Herranz, V. (2024). Modeling of a solution polymerization reactor operating in semi-batch mode for polymethyl methacrylate production. Chemical Engineering Research and Design, 210, 230-246.
    [6] Chen, X. Z., Luo, Z. H., Yan, W. C., Lu, Y. H., & Ng, I. S. (2011). Three‐dimensional CFD‐PBM coupled model of the temperature fields in fluidized‐bed polymerization reactors. AIChE Journal, 57(12), 3351-3366.
    [7] Shi, D. P., Luo, Z. H., & Guo, A. Y. (2010). Numerical simulation of the gas− solid flow in fluidized-bed polymerization reactors. Industrial & engineering chemistry research, 49(9), 4070-4079.
    [8] Yan, W. C., Li, J., & Luo, Z. H. (2012). A CFD-PBM coupled model with polymerization kinetics for multizone circulating polymerization reactors. Powder technology, 231, 77-87.
    [9] Balasubramanian, S. G., & Louvar, J. F. (2002). Study of major accidents and lessons learned. Process Safety Progress, 21(3), 237-244.
    [10] Dakshinamoorthy, D., Khopkar, A. R., Louvar, J. F., & Ranade, V. V. (2004). CFD simulations to study shortstopping runaway reactions in a stirred vessel. Journal of loss Prevention in the process Industries, 17(5), 355-364.
    [11] Milewska, A., & Molga, E. J. (2007). CFD simulation of accidents in industrial batch stirred tank reactors. Chemical Engineering Science, 62(18-20), 4920-4925.
    [12] Dakshinamoorthy, D., & Louvar, J. F. (2008). Shortstopping and jet mixers in preventing runaway reactions. Chemical engineering science, 63(8), 2283-2293.
    [13] Cherbański, R., Milewska, A., & Molga, E. (2007). Safety aspects in batch reactors for styrene suspension polymerization. Industrial & engineering chemistry research, 46(18), 5898-5906.
    [14] Jiang, J., Yang, J., Jiang, J., Pan, Y., Yu, Y., & Zhou, D. (2016). Numerical simulation of thermal runaway and inhibition process on the thermal polymerization of styrene. Journal of Loss Prevention in the Process Industries, 44, 465-473.
    [15] Ampelli, C., & Maschio, G. (2012). Investigation of thermal runaway in semibatch chemical reactors by an early warning detection device. CHEMICAL ENGINEERING, 26.
    [16] Dakshinamoorthy, D., Khopkar, A. R., Louvar, J. F., & Ranade, V. V. (2006). CFD simulation of shortstopping runaway reactions in vessels agitated with impellers and jets. Journal of Loss Prevention in the Process Industries, 19(6), 570-581.
    [17] Dakshinamoorthy, D., & Louvar, J. F. (2006). Hotspot distribution while shortstopping runaway reactions demonstrate the need for CFD models. Chemical Engineering Communications, 193(5), 537-547.
    [18] Maddah, H. A. (2016). Polypropylene as a promising plastic: A review. Am. J. Polym. Sci, 6(1), 1-11.
    [19] Ogawa, H. (2009). Review on development of polypropylene manufacturing process. Sumitomo Kagaku, 2009(2), 1-11.
    [20] Gahleitner, M., & Paulik, C. (2017). Polypropylene and other polyolefins. In Brydson's plastics materials (pp. 279-309). Butterworth-Heinemann.
    [21] Kouzai, I., & Fukuda, K. (2009, October). Modeling Study on Effects of Liquid Propylene in Horizontally Stirred Gas‐Phase Reactors for Polypropylene. In Macromolecular Symposia (Vol. 285, No. 1, pp. 23-27). Weinheim: WILEY‐VCH Verlag.
    [22] Dittrich, C. J., & Mutsers, S. M. (2007). On the residence time distribution in reactors with non-uniform velocity profiles: The horizontal stirred bed reactor for polypropylene production. Chemical engineering science, 62(21), 5777-5793.
    [23] Caracotsios, M. (1992). Theoretical modelling of Amoco's gas phase horizontal stirred bed reactor for the manufacturing of polypropylene resins. Chemical engineering science, 47(9-11), 2591-2596.
    [24] Levenspiel, O. (1972). Chemical Reaction Engineering John Wiley & Sons. Inc., New York.
    [25] Zacca, J. J., Debling, J. A., & Ray, W. H. (1996). Reactor residence time distribution effects on the multistage polymerization of olefins—I. Basic principles and illustrative examples, polypropylene. Chemical Engineering Science, 51(21), 4859-4886.
    [26] Gorbach, A. B., Naik, S. D., & Ray, W. H. (2000). Dynamics and stability analysis of solid catalyzed gas-phase polymerization of olefins in continuous stirred bed reactors. Chemical engineering science, 55(20), 4461-4479.
    [27] Khare, N. P., Lucas, B., Seavey, K. C., Liu, Y. A., Sirohi, A., Ramanathan, S., ... & Chen, C. C. (2004). Steady-state and dynamic modeling of gas-phase polypropylene processes using stirred-bed reactors. Industrial & engineering chemistry research, 43(4), 884-900.
    [28] Yan, W. C., Dong, T., Zhou, Y. N., & Luo, Z. H. (2023). Computational modeling toward full chain of polypropylene production: From molecular to industrial scale. Chemical Engineering Science, 269, 118448.
    [29] Chen, X. Z., Shi, D. P., Gao, X., & Luo, Z. H. (2011). A fundamental CFD study of the gas–solid flow field in fluidized bed polymerization reactors. Powder Technology, 205(1-3), 276-288.
    [30] Wei, L. H., Yan, W. C., & Luo, Z. H. (2011). A preliminary CFD study of the gas–solid flow fields in multizone circulating polymerization reactors. Powder technology, 214(1), 143-154.
    [31] Yan, W. C., Chen, G. Q., & Luo, Z. H. (2012). A CFD modeling approach to design a new gas barrier in a multizone circulating polymerization reactor. Industrial & engineering chemistry research, 51(46), 15132-15144.
    [32] Yan, W. C., Luo, Z. H., Lu, Y. H., & Chen, X. D. (2012). A CFD‐PBM‐PMLM integrated model for the gas–solid flow fields in fluidized bed polymerization reactors. AIChE journal, 58(6), 1717-1732.
    [33] Yao, Y., He, Y. J., Luo, Z. H., & Shi, L. (2014). 3D CFD-PBM modeling of the gas–solid flow field in a polydisperse polymerization FBR: The effect of drag model. Advanced Powder Technology, 25(5), 1474-1482.
    [34] Yao, Y., Su, J. W., & Luo, Z. H. (2015). CFD-PBM modeling polydisperse polymerization FBRs with simultaneous particle growth and aggregation: the effect of the method of moments. Powder technology, 272, 142-152.
    [35] Li, Z., van Sint Annaland, M., Kuipers, J. A. M., & Deen, N. G. (2017). Effect of operating pressure on particle temperature distribution in a fluidized bed with heat production. Chemical Engineering Science, 169, 299-309.
    [36] Gao, X., Shi, D. P., Chen, X. Z., & Luo, Z. H. (2010). Three-dimensional CFD model of the temperature field for a pilot-plant tubular loop polymerization reactor. Powder Technology, 203(3), 574-590.
    [37] Müller, J., & Velten, K. (2015). Application of computational fluid dynamics for the optimization of homogenization processes in wine tanks. In BIO Web of Conferences (Vol. 5, p. 02014). EDP Sciences.
    [38] Roudsari, S. F., Ein-Mozaffari, F., & Dhib, R. (2013). Use of CFD in modeling MMA solution polymerization in a CSTR. Chemical engineering journal, 219, 429-442.
    [39] Bai, H., Stephenson, A., Jimenez, J., Jewell, D., & Gillis, P. (2008). Modeling flow and residence time distribution in an industrial-scale reactor with a plunging jet inlet and optional agitation. Chemical Engineering Research and Design, 86(12), 1462-1476.
    [40] Rasouli, M., Mousavi, S. M., Azargoshasb, H., Jamialahmadi, O., & Ajabshirchi, Y. (2018). CFD simulation of fluid flow in a novel prototype radial mixed plug-flow reactor. Journal of Industrial and Engineering Chemistry, 64, 124-133.
    [41] Ansys® Fluent Release, 25.1, Help System, Fluent Theory Guide, ANSYS, Inc.
    [42] Wilcox, D. C. (1998). Turbulence modeling for CFD (Vol. 2, pp. 103-217). La Canada, CA: DCW industries.
    [43] Ansys® Fluent Release, 25.1, Help System, Fluent User’s Guide, ANSYS, Inc.
    [44] Mark, J. E. (2009). Polymer data handbook. (No Title).
    [45] Kaneko, Y., Shiojima, T., & Horio, M. (1999). DEM simulation of fluidized beds for gas-phase olefin polymerization. Chemical Engineering Science, 54(24), 5809-5821.
    [46] Toda, K., & Furuse, H. (2006). Extension of Einstein's viscosity equation to that for concentrated dispersions of solutes and particles. Journal of bioscience and bioengineering, 102(6), 524-528.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE