| 研究生: |
鄭志偉 Cheng, Chih-Wei |
|---|---|
| 論文名稱: |
以質子交換鈮酸鋰製作環形共振腔之設計及分析 The Design and Characterization of the Optical Microring Resonators in proton-exchanged Lithium Niobate |
| 指導教授: |
莊文魁
Chuang, Ricky Wen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 鈮酸鋰 、光波導 、環形共振腔 、多模態干涉 、質子交換 |
| 外文關鍵詞: | LiNbO3, Optical waveguide, Ring resonator, Multimode Interference, Proton-exchanged |
| 相關次數: | 點閱:158 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈮酸鋰晶圓起源於1928年,是一種鈮、鋰、氧的化合物,且不溶於水,無色固體。鈮酸鋰具有多種光學特性,如雙折射性、壓電、聲光、以及非線性光等等,對於光學應用製作積體光路有相當大的潛力,本篇論文將探討在通訊波段為1552奈米下,在鈮酸鋰晶圓上,以硬脂酸當作交換源,鈦薄膜當作遮罩,進行質子交換波導製程,製作出耦合間隙為0.6微米之雙圓環共振腔以及1×2標準型分光比50:50,WMMI為20微米之多模干涉圓環共振腔。實驗過後成功的運用,將波段1552奈米鐳射二極體再搭配摻鉺光纖放大器(EDFA)利用耦合方式導入共振腔,利用光場量測之光場圖判定光波導的導光優劣度,最後改為使用光纖連接到光頻譜分析儀(OSA)進行穿透頻譜量測分析。
鈮酸鋰質子交換製作光波導,在1982年提出,硬脂酸粉末是一個價格便宜、無毒性、不會腐蝕以及使用安全,故適合本實驗作為交換源,在深入的了解質子交換,對於其在溫度與時間的穩定控制下,方能成功的製作出耦合間隙為0.6微米之雙圓環共振腔。環形共振腔要成功達到耦合共振效果,要遵循兩項原理:(1)全反射定理,(2)符合建設性干涉原理,另外還有三個重點,耦合長度(範圍)、折射率以及波導與環的耦合間隙,利用菱鏡耦合儀測得質子交換波導層的折射率,越短的波導與圓環間隙距離,將會有良好的耦合效率,而波導長度也要夠長,才能使波導與圓環間有耦合現象。多模干涉圓環共振腔利用自成像原理,在特定的距離下,將一光場入射至一個可存在多模態的波導中,行進方向具有週期性、重複的干涉變化,產生一個或多個與原入射光場相同但能量強度下降的光場,不同模態的傳播速度差異,會產生不同模態間相互干涉的現象,經過特定距離產生具有建設性或破壞性干涉的變化,運用此特性控制多模態波導的長度,可以有效的達到特定比例的分光效果。本論文將詳細介紹雙圓環共振腔與多模干涉圓環共振腔的簡介、原理、製作流程以及頻譜量測分析。
Proton-exchanged(PE) double ring resonators with a guide width 0.6μm and 58.6μm outer diameter and 1×2 general MMI have been fabricated on Z-cut lithium niobate(LiNbO3). Ring resonators on LiNbO3 are particularly appealing because of the possibility of high electro-optic(EO) coefficients and nonlinear coefficients. Proton-exchanged(PE) in LiNbO3 permits a large n so that one can fabricate small rings with low radiation loss. The resonator structure was defined in a 150nm layer of Titanium(Ti) with the PE in Stearic Acid carried out at 280°C for 2 hours. The technique is gaining considerable interest because of its distinct advantages: simplicity and relatively low exchange temperatures comparing to the standard titanium diffusion technique. Here we report further details on fabrication, and performance at 1552nm. We measure the characteristic of the device by CCD camera and the optical spectrum analyzer. The measured transmission spectrum of the double ring resonators and the MMI ring resonator around 1552nm are presented in Fig. 3 and Fig. 4. TM polarization of the waveguide bus can be coupled into the ring resonator. The extinction ratio of double ring resonators at the resonant wavelengths is approximately 10 dB.
第一章
[1] Gregory H. Olsen, “InGaAsP laser diodes,” Opt. Eng., vol. 20, pp. 440-445, 1981.
[2] Prentice Hall, and P. Kaiser, “Vibrational mode assignments,” Appl. Phys. Lett., vol. 23, pp.45, 1973.
[3] Tetsuo Miya, Toshihito Hosaka, Yukio Terunuma and Tadashi Miyashita, “Ultra low loss single-mode fibers at 1.55 μm,” Rev. Electrical Communication Lab., vol. 27, pp.497-506, 1979.
[4] H. Nishihara, M. Haruna, and T. Suhara, “Optical integrated circuits,” McGraw-Hill Book Company, 1989.
[5] R.J. Mears, L. Reekie, S.B. Poole and D. N. Payne, “Neodymium Doped Silica Single-Mode Fibre Lasers,” Electron. Lett., vol. 21, 1985.
[6] S.B. Poole, D.N. Payne and M.E. Fermann, “Fabrication of Low-Loss Optical Fibres Containing Rare-Earth Ions,” Electron. Lett., vol. 21, 1985.
[7] K. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," in Proceedings of the Institution of Electrical Engineers, vol. 113, no. 7, pp. 1151-1158: IET. 1966.
[8] S.E. Miller, “Integrated optics: An introduction,” Bell Syst. Tech. J., vol. 48, pp. 2059-2069, 1969.
[9] F. Kane and Robert R.Krchnavek, “Beazocyclobutene optical waveguide,” IEEE Photon. Tech. Lett., vol. 7, no.5, pp.535-537, 1995.
[10] R.S.Weis and T.K.Gaylord, “Lithium Niobate : Summary of Physical Properties and Crystal Structure ,” Appl. Phys. Lett. ,Vol.37, PP. 171-203, 1985.
[11] http://www.roditi.com/SingleCrystal/LiNbO3/LiNbO3-Wafers.html
[12] S. O. Kasap, “Optoelectronics and Photonics Principles and Practices, ” Prentice Hall. 2001.
[13] S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Communication, vol. 17, p. 332-335, 1976.
[14] D. E. Zelmon, D. L. Small, and D. Jundt, "Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide–doped lithium niobate," JOSA B, vol. 14, no. 12, pp. 3319-3322, 1997.
[15] O.Gayer, Z. Sacks, E. Galun, and A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3," Appl. Phys. B, journal article vol. 91, no. 2, pp. 343-348, 2008.
第二章
[1] Richard Syms John Cozens, "Optical guide wave and devices," New York, Mcgraw-Hill, 1992.
[2] Divid K. Cheng, "Field and Wave Electromagnetic 2/E," Addison Wesley Longman Press. 1989.
[3] Okamoto K. "Fundamentals of Optical Waveguides 2/E," Academic Press. 2006.
[4] Liu, J. M., "Photonic Devices," Cambridge University Press, 2005.
[5] Amnon Y., "Critical Coupling and Its Control in Optical Waveguide-Ring Resonator Systems," IEEE Photon. Technol. Lett., vol. 14, no. 4, 2002.
[6] S. Saha, S. S. Yohanes, D. Jun, A. Danner, and M. Tsang, "Fabrication and characterization of optical devices on lithium niobate on insulator chips," Procedia Engineering, vol. 140, pp. 183-186, 2016.
[7] A. Majkić, M. Koechlin, G. Poberaj, and P. Günter, "Optical microring resonators in fluorine-implanted lithium niobate," Optics express, vol. 16, no. 12, pp. 8769-8779, 2008.
[8] Kirankumar Rajshekhar Hiremath, "Coupled Mode Theory Based Modeling and Analysis of Circular Optical Microresonators", Kirankumar R. Hiremath, pp. 8-17, 2005.
[9] Yariv A., "Coupled-Mode Theory for Guided-Wave Optics," IEEE Journal of Quantum Electronics, vol. QE-9, no. 9, pp. 919-933, SEP.1973.
[10] B. Little et al., "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett., vol. 16, no. 10, pp. 2263-2265, 2004.
[11] C. Madsen and G. Lenz, "Optical all-pass filters for phase response design with applications for dispersion compensation," IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 994-996, 1998.
[12] K. Oda, N. Takato, and H. Toba, "A wide-FSR waveguide double-ring resonator for optical FDM transmission systems," Journal of lightwave technol., vol. 9, no. 6, pp. 728-736, 1991.
[13] F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, "Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects," Opt. express, vol. 15, no. 19, pp. 11934-11941, 2007.
[14] Rabus, D.G., "Integrated Ring Resonators," Spinger, 2007.
第三章
[1] H. F. Talbot, "Facts relating to optical science No. IV," London, Edinburgh Philosophical Mag., J. Sci., vol. 9, pp. 401407, Dec. 1836.
[2] D. Marcuse, "Light Transmission Optics," New York: Van Nostrand Reinhold, 1972.
[3] 0. Bryngdahl, "Image formation using self-imaging techniques," J. Opt. Soc. Amer., vol. 63, no. 4, pp. 41-19, 1973.
[4] R. Ulrich, "Image formation by phase coincidences in optical waveguides," Opt. Communication., vol. 13, no. 3, pp. 259-264, 1975.
[5] L.B. Soldano and E. C. M. Pennings, "Optical Multimode Interference Devices Based on Self-imaging - Principles and Applications", J. of Lightwave Technology, vol. 13, pp. 615-627, Apr. 1995.
[6] M. Bachmann, P. A. Besse, and H. Melchior, "General self-imaging properties in N x N multi-mode interference couplers including phase relations," Appl. Opt., vol. 33, no. 17, pp. 3905-3911, 1994.
[7] Lucas B. Soldano and Erik C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging : Principles and Applications,” IEEE Photon. Technol. Lett., J. of Lightwave Technol., vol. 13, no. 4, pp. 615-627, Apr. 1995.
[8] T. T. L., “Microring Resonator Based 3x3 General Multimode Interference Structure Using Silicon Waveguides for Highly Sensitive Sensing and Optical Communication Applications,“ International Journal of Applied Science and Engineering., vol. 11, no. 1, pp. 31-39, 2013.
[9] Teppei Fukuda, Kazunori Okamoto, Yasuhiro Hinokuma, and Kiichi Hamamoto, “Phase-Locked Array Laser Diodes (LDs) by Using 1×N Active Multimode-Interferometer (MMI),” IEEE Photon. Technol. Lett., vol. 21, no. 3, pp. 176-178, FEB. 2009
[10] Shu-Hao Fan, Daniel Guidotti, Hung-Chang Chien, and Gee-Kung Chang, “Compact polymeric four-wavelength multiplexers based on cascaded step-size MMI for 1G/10G hybrid TDM-PON applications,” Opt. Exp., vol. 16, no. 17, pp. 12664-12669, AUG. 2014
[11] K. Yamamoto, Tetsuo” Characteristics of pyrophosphoric acid PE in LiNbO3”, J. Appl. Phys. 70, 11, p6663, 1991.
[12] E. Y. B. Pun, K. K. Loi, and P. S. Chung, “Proton-exchanged optical waveguides in Z-cut LiNbO3 using phosphoric acid,” IEEE Trans. Lightwave Technol., vol. 11, no. 2, pp. 277-284, Feb. 1993.
[13] E. Y. B. Pun, T. C. Kong, P. S. Chung, and H. P. Chan, “Index profile of proton-exchanged waveguides in LiNbO3 using pyrophosphoric acid,” Electron. Lett., vol.26, pp. 81-82, 1990.
[14] E. Y. B. Pun, S. A. Zhao, K. K. Loi, and P. S. Chung, “Proton-exchanged LiNbO3 optical waveguides using stearic acid,” IEEE Trans. Photon. Technol. Lett., vol. 3, no. 11, pp. 1006-1008, Nov. 1991.
[15] M. Rottschalk, A. Rasch, and W. Karthe, “Electrooptic behavior of proton exchanged LiNbO3 optical waveguides,” J. Opt. Comm., vol. 9 pp. 19-23, 1988.
[16] A. Y. Yan, “Index instabilities in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett., vol. 42, pp. 633-635, 1983.
[17] Y. N. Korkishko, V. A. Fedorov, and O. Y. Feoktistova, “LiNbO3 optical waveguide fabrication by high-temperature proton exchange,” J. Lightwave Technol., vol. 18, pp. 562-567, 2000.
[18] Y. N. Korkishko, and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE J. Quantum Electron., vol. 2, pp. 187-196, 1996.
[19] Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and opticalproperties of proton-exchanged waveguides on Z-cut lithium niobate” Appl. Opt. ,vol. 35, no. 36, Dec.1996.
[20] W. Jin, K. S. Chiang, and Q. Liu, “Electro-Optic Long-Period Waveguide Gratings in Lithium Niobate,” Opt. Exp., vol. 16, no. 25, Dec. 2008.
[21] J. L. Jackel, J. J Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett., vol. 27, no. 15, July 1991.
[22] Fredrik Laurell, Jonas Webjorn, Gunnar Arvidsson, and Johan Holmberg, “Wet etching of proton-exchanged lithium niobate-A novel processing technique,” J. Lightwave Technol., vol. 10, no. 11, Nov. 1992.
[23] Cheng-Chih Lai, Chin-Yu Chang, Yuan-Yaw Wei, and Way-Seen Wang, ”Gamma-ray irradiation-enhanced wet-etching of proton-exchanged lithium niobate,” IEEE Photon. Technol. Lett., vol. 20, no. 9, May 2008.
[24] R. V. Schmidt and I. P. Kaminow, “Metal diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., 25, p458-460, 1974.
[25] T. Nozawa, K. Noguchi, H. Miyazawa, and K. Kawano, “Water vapor effects on optical characteristics in Ti:LiNbO3 channel waveguides,” Appl. Opt., 30, p1085-1089, 1991.
[26] J. Noda, N. Uchida, S. Saito, T. Saku, and M. Minakada,“Electro-optic amplitude modulation using three-dimensional LiNbO3 waveguide fabricated by TiO2 diffusion,” Appl. Phys. Lett., 27, p19-21 ,1975.
[27] W. K. Burns, C. H. Bulmer, and E. J. West, “Application of Li2O compensation techniques to Ti-diffused LiNbO3 planar and channel waveguides,” Appl. Phys. Lett., 33, p70-72 ,1978.
[28] T. R. Ranganath and S. Wang, “Suppression of Li2O out-diffusion from Ti-diffused LiNbO3 optical waveguides,” Appl. Phys. Lett., 30, p376-379 ,1977.
[29] S. Miyazawa, R. Guglielmi, and A. Carenco, “A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguide,” Appl. Phys. Lett., 31, p742-744 ,1977.
[30] J. L. Jackel, V. Ramaswamy, and S. P. Lyman, “Elimination of out-diffused surface guiding in titanium-diffused LiNbO3,” Appl. Phys. Lett. 38, p509-511 ,1981.
[31] R. J. Esdaile, “Closed-tube control of out-diffusion during fabrication of optical waveguides in LiNbO3,” Appl. Phys. Lett., 33, p733-734 ,1978.
[32] Y. P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang , “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Technol. Lett., vol. 8, pp. 548-550, Apr.1996.
第四章
[1] A. Sosa, ”Design of Silicon Photonic Multimode Interference Couplers,” ETSETB, 2012.
[2] C. C. Lai, C. Y. Chang, Y. Y. Wei, and W. S. Wang, ”Gamma-ray irradiation-enhanced wet-etching of proton-exchanged lithium niobate,” IEEE Photon. Technol. Lett., vol. 20, no. 9, May 2008.
第五章
[1] S. Saha, S. S. Yohanes, D. Jun, A. Danner, and M. Tsang, "Fabrication and characterization of optical devices on lithium niobate on insulator chips," Procedia Engineering, vol. 140, pp. 183-186, 2016.
[2] W. Sohler et al., "Integrated optical devices in lithium niobate," Optics and Photonics News, vol. 19, no. 1, pp. 24-31, 2008.
第六章
[1] Fabrizio Scarpetta, Politecnico di Bari,’’ Tecnologie dei risonatori ottici ad anello,’’ PUBBLICA LA TESI, 2005.
[2] D. Jun, S. Hussian, S. Saha, C. E. Png, M. Tsang, and A. J. Danner, "Optical microring resonators in lithium niobate for classical and quantum microwave photonics," in Optical MEMS and Nanophotonics (OMN), 2013 International Conference, pp. 89-90: IEEE. 2013.