| 研究生: |
陳泓翔 Chen, Hong-Hsiang |
|---|---|
| 論文名稱: |
熱傳導效應下的快震波結構 Structure of fast shocks in the presence of heat conduction |
| 指導教授: |
李羅權
Lee, Lou-Chuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 熱傳導 、快震波 、日冕 、R-H關係式 |
| 外文關鍵詞: | heat conduction, fast shock, corona, Rankine-Hugoniot relations |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究在熱傳導效應下的快震波結構。在磁場重聯的過程中會產生快震波、中速震波及慢震波等不連續結構。發生在日冕區的磁場重聯,則必須考慮其強烈的熱傳導效應,其中產生的慢震波結構已在Tsai et al. [2002, 2005]詳細探討過。利用一維磁流體(1D-MHD)數值模擬碼,研究在不同電漿參數下的快震波結構,這些參數包括:熱傳導係數K0,電漿的壓力與磁壓比,馬赫數,及磁場與法線方向的夾角。為方便震波結構的分析,直接由震波上游參數,結合Rankine-Hugoniot (R-H)關係式計算出下游參數,並分析快震波隨時間的發展。研究發現快震波會在主震波上游近端形成波前震波(foreshock)結構,這是由於震波加熱過的下游電漿,藉由熱傳導效應將熱能從震波下游傳遞到上游,使主震波近處上游的電漿有別於遠方上游的分布而形成波前震波結構。本研究觀察在不同參數下,快震波之波前震波結構隨時間的變化。我們發現,快震波下游電漿受到熱傳導效應的作用,熱能以擴散速度(Vd)由下游傳遞到上游,當Vd與對流速度相同時,快震波即達到穩定狀態。研究並發現在不同K0的情形下其擴散速度(Vd)都大致相同。經由兩個修改的R-H關係式:包含熱流的R-H關係式及等溫條件下的R-H關係式,去計算越過震波的密度躍遷,所得到的計算值和模擬結果非常接近,且密度躍遷可達沒有熱傳導效應影響下的4倍以上。研究結果將可應用到日冕、太陽風及磁層的快震波研究。
The structure of fast shocks in the presence of heat conduction is studied. The fast shock, intermediate shock and slow shock can be generated by magnetic reconnection. The heat conduction effect is important for magnetic reconnection in the solar corona. The structure of slow shocks in the presence of heat conduction has been studied in Tsai et al. (2002, 2005). By using one- dimensional (1D) MHD simulation in this paper. The structure of fast shocks is studied under different plasma parameters, such as the heat conductivity K0, the ratio of upstream plasma pressure to magnetic pressure, Alfvén Mach number, and the angle between shock normal and magnetic field. For the convenience of setting up the initial shock structure. The Rankine-Hugoniot (R-H) relations are used to determine the downstream parameters for a given set of upstream parameters, which are then used to simulate the time evolution of fast shocks. It is found that the fast shock will form a foreshock in the presence of heat conduction. The foreshock is formed due to the heat flow from downstream to upstream and located in the immediate upstream of the main shock. The time evolution of the foreshock structure is simulated under different set of initial upstream parameters. The value of diffusion velocity Vd in the foreshock is found to be approximately equal to the convection velocity of fast shock, and hence the diffusion velocity is nearly the same for different values of K0. By using two kinds of modified R-H relations, the modified Rankine-Hugoniot relations with heat flux, and modified isothermal Rankine-Hugoniot relations, the density jump across fast shock is examined for various upstream parameters. The results show that the calculated density jumps are very close to the simulation values and the density jump can far exceed the maximum value of 4 without heat conduction. The present results can be applied to fast shocks in the solar corona, solar wind and magnetosphere.
Coroniti, F. V., Dissipation discontinuities in hydromagnetic shock waves, J. Plasma Phys., 4, 265, 1970.
Choe, G. S., and L. C. Lee, Formation of solar prominences by photospheric shearing motions, Solar Phys., 138, 291, 1992.
Chao J. K., L. H. Lyu, B. H. Wu, A. J. Lazarus, T. S. Chang, and R. P. Lepping, Observations of an intermediate shock in interplanetrary space, J. Geophys. Res., 98, 17443, 1993.
Edmiston, J. P., and C. F. Kennel, A parametric study of slow shock Rankine-Hugoniot solutions and critical Mach numbers, J. Geophys. Res., 92, 1361, 1986.
Forbes, T. G., J. M. Malherbe and E. R. Priest, Sol. Phys., 120, 258, 1989.
Kennel, C. F., Structure and evolution of small-amplitude intermediate shock waves, J. Geophys. Res., 92, 13427, 1987.
Landau, L. D., and E. M. Lifshitz, Electrodymatics of continuous media (Pergamom Press, N. Y., 1960), pp. 224-233.
Lin, Y., and L. C. Lee, Structure of reconnection layers in the magnetosphere, Space Sci. Rev., 65, 59, 1994.
Lee, L. C. and B. H. Wu, Heating and Acceleration of Protons and Minor Ions by Fast Shocks in the Solar Corona, Astrophys. J., 535, 1014, 2000.
Marshall, W., Proc. R. Soc. London, Ser. A 233, 367, 1955.
Masuda, S., T. Kosugi, T. Hara, S. Tsuneta, and Y. Ogawara, A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection, Nature, 371, 495, 1994.
Oreshina, A. V. and B. V. Somov, Astron. Rep., 40, 263, 1996.
Petschek, H. E., Magnetic field annihilation, in AAS-NASA Symposium on the Physics of Solar Flares, ed. W. N. Hess(Washington, DC:NASA SP-50), 425, 1964.
Spitzer, L., Physics of Fully Ionized Gases (Interscience, New York), pp.143-147, 1962.
Tsai, C. L., R. H. Tsai, B. H. Wu, and L. C. Lee, Structure of slow shocks in a magnetized plasma with heat conduction, Phys. Plasmas., 9, 1185, 2002.
Tsai, C. L., B. H. Wu, and L. C. Lee, Structure of intermediate shocks and slow shocks in a magnetized plasma with heat conduction, Phys. Plasmas., 12, 2005.
Wu, C. C., On MHD intermediate shocks, Geophys. Res. Lett., 14, 668, 1987.
Wu, C. C., Effects of dissipation on rotational discontinuities, J. Geophys. Res., 93, 3969, 1988.
Wu, C. C., Formation, structure, and stability of MHD intermediate shocks, J. Geophys. Res., 95, 8149, 1990.
Xu, P., and T. G. Forbes, The Structure of Radiative Slow-Mode Shocks, Solar Physics., 139, 315, 1992.
Yokoyama, T., and K. Shibata, Magnetic Reconnection Coupled with Heat Conduction, Astrophys. J. 474, 61, 1997.
Yokoyama, T., and K. Shibata, Magnetohydrodynamic Simulation of a Solar Flare with Chromospheric Evaporation Effect Based on the Magnetic Reconnection Model, Astrophys. J., 549, 1160, 2001.
涂傳詒, “日地空間物理學”, 科學出版社, 北京市, 1988.
李宗偉, 蕭興華, “普通天體物理學”, 凡異出版社, 1996.
吳伯翰, 震波與不連續結構之交互作用, 中央大學博士論文, 1996.
王水, 李羅權, “磁場重聯”, 安徽敎育出版社, 合肥市, 1999.
吳鑫基, 溫學詩, “諾貝爾獎百年鑑-天體物理學”, 世潮出版社, 2002.
謝鳴旭, 日冕區磁場重聯與快震波的形成, 成功大學碩士論文, 2005.
蔡青霖, 磁場By分量及熱傳導效應對電流片發展的影響, 成功大學博士論文, 2005.