簡易檢索 / 詳目顯示

研究生: 蘇清木
Su, Qing-Mu
論文名稱: 從分配效率與分配公平角度研擬流域空間發展和雨洪逕流責任分擔的架構
Developing a framework for the spatial development of watershed and the responsibility sharing of stormwater runoff from the distribution efficiency and distribution fairness
指導教授: 張學聖
Chang, Hsueh-Sheng
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 147
中文關鍵詞: 雨洪逕流公平與效率分配模式逕流責任流域發展雨洪管理
外文關鍵詞: Stormwater runoff, Fairness and efficiency, Distribution mode, Runoff responsibility, Watershed development, Stormwater management
ORCID: 0000-0002-7020-8806
ResearchGate: https://www.researchgate.net/profile/Su-Qingmu
相關次數: 點閱:110下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 城市化和氣候變化下,產生大量的雨洪逕流的問題,傳統上雨洪逕流是通過基礎設施進行管理的方式,其結構的效率及其對環境的影響日愈受到質疑。治水措施逐漸轉變為綜合治水,但如何應用土地使用規劃減少洪災風險並兼顧地區開發權益以達到永續發展,仍有待解決。因此,明確的責任分工對於雨洪逕流分配內部化過程至關重要。同時由於地區發展不平衡的關係,對於釐清逕流責任的歸屬變得尤為的困難。臺灣目前形成了大尺度和小尺度逕流分擔、出流管制的總體策略,但仍然缺乏中尺度的分配研究。
    本研究,借由效率與公平的觀點,試圖建構一個兼顧「公平」與「效率」且具指導性的逕流分擔的規劃框架。該框架首先考慮了效率的觀點,通過研究流域的生態效率,建立了一個評估流域經濟效率和逕流治理效率的兩階段的DEA模型,難後,基於兩階段的DEA效率模型,提出了雨洪逕流分配的效率模型,實現雨洪逕流總量重新分配的目的。其次,從公平的角度,本研究通過多區域的輸入輸出遙相關關係,建立地區發展不平衡的評估方式,並以此結果作為雨洪逕流公平分配的依據。效率與公平的分配結果可以作為兩個極端分配下調整的依據,並應用決策者偏好的角度調整兩者分配的比例,從而得到雨洪逕流最佳分配方式和理清逕流責任的歸屬,進而回應都市急遽發展及全球氣候變遷之雙重挑戰下的治水策略。
    具體的結論可歸結為以下幾點。效率觀點下的結論:(Ⅰ)大甲溪流域的綜合生態效率呈現中游(22.387)>下游(20.663)>上游(4.486)的情況,可見,流域的空間發展是不平衡的;(Ⅱ)在雨洪逕流減少29.7%的情況下,下游、中游和上游分別承擔了雨洪逕流量的減少總量的88.80%、5.61%和5.59%的分擔量,說明在考慮生態效率下,上中下游的對雨洪逕流量資源的分配能力存在著差異;(Ⅲ)根據綜合生態效率和資源配置的結果,我們知道綜合生態效率越低的地區,對資源的重新分配有更多的潛力。公平觀點下的結論:(Ⅰ)從耦合關係來看,外部系統需要分擔70.3%的逕流增量,中游和下游地區需要分擔4.98%和22.93%逕流總量,而上游只需要分擔1.39%的逕流總量。(Ⅱ)各類土地利用的逕流量的分擔結果,可以作為未來各部門治理雨洪逕流的財政投入的比例的依據。決策者偏好角度的結論:(Ⅰ)效率的雨洪逕流分配更具韌性,而公平的逕流分配結果的內部差異較小;(Ⅱ)決策者的不同偏好,對上中下遊的逕流分擔影響較大,當決策者偏好為0.2時(即更加注重公平的分配),逕流分擔的內部分歧最小。本文的研究結果可以作為中尺度的逕流分擔規劃的依據,並指導流域內各行政區的逕流分擔。

    Under urbanization and climate change, a large amount of stormwater runoff is generated. Traditionally, stormwater runoff is managed through infrastructure. The efficiency of its structure and its impact on the environment are increasingly being questioned. Water control measures are gradually transformed into comprehensive water control, but how to apply land use planning to reduce flood risks and take into account the rights of regional development to achieve sustainable development remains to be resolved. Therefore, a clear division of responsibilities is essential for the internalization process of stormwater runoff distribution. At the same time, due to the unbalanced regional development, it is particularly difficult to clarify the ownership of runoff responsibility. Taiwan has formed a general strategy of large-scale and small-scale runoff sharing and outflow control, but there is still a lack of mesoscale distribution research.
    This study, with the view of efficiency and fairness, attempts to construct a planning framework that takes into account both "fairness" and "efficiency" and guides runoff sharing. The framework first considers the viewpoint of efficiency. By studying the ecological efficiency of the watershed, a two-stage DEA model is established to evaluate the economic efficiency and environmental efficiency of the watershed. After the difficulty, based on the two-stage DEA efficiency model, an efficiency model of stormwater runoff distribution was proposed to realize the purpose of redistributing the total amount of stormwater runoff. Secondly, from the perspective of fairness, this study establishes an assessment method of regional development imbalance through multi-regional input-output coupling relationships, and uses this result as the basis for the fair distribution of stormwater runoff. The results of efficient and fair distribution can be used as the basis for adjustment under the two extreme distributions, and apply the perspective of decision maker preference to adjust the ratio of the two allocations, so as to obtain the best distribution method of stormwater runoff and clarify the attribution of runoff responsibility, and then respond to the water governance strategy under the dual challenges of rapid urban development and global climate change .
    The specific conclusions can be summarized as follows. Conclusion from the view of efficiency: (I) the integrated ecological efficiency of watershed of Dajiaxi presents: midstream (22.387) > downstream (20.663) > upstream (4.486), suggesting the unbalanced spatial development of the watershed; (II) In the case when the stormwater runoff was reduced by 20%, the downstream, midstream and upstream respectively bear 88.80%, 5.61% and 5.59%of the total amount of reduced stormwater runoff, indicating that there is a difference in the ability of upstream, midstream and downstream to allocate stormwater runoff resources when the ecological efficiency is considered; (III) According to the integrated ecological efficiency and the results of resource allocation, it can be found that the lower the integrated ecological efficiency of an area, the more potential for resource allocation it will have. Conclusion from the fairness: (I) From the perspective of the coupling relationship, the external system needs to share 70.3% of the runoff increment, the midstream and downstream need to share 4.88% and 23.44% of the total runoff, while the upstream only needs to share 1.39% of the total runoff. (II) The results of runoff sharing by various types of land use can be used as the basis for determining the proportion of financial investment in stormwater runoff management by various departments in the future. Decision makers’ preference point of conclusion: (I) efficient stormwater runoff distribution is more resilient, while fairness runoff distribution results have smaller internal differences; (II) The different preferences of decision makers have a greater impact on the upstream, midstream and downstream runoff sharing. When the decision makers' preference is 0.2 (that is, more attention is paid to fairness distribution), the internal divergence of runoff sharing is the smallest. The research results of this paper can be used as the basis for the meso-scale flow sharing plan and guide the runoff sharing of the administrative districts in the watershed.

    第一章 緒論 1 第一節 研究背景與目的 1 壹、研究背景 1 貳、研究目的 5 第二節 研究議題與創新性 5 壹、研究議題 5 貳、創新之處 6 第三節 研究範圍與流程內容 7 壹、研究區域 7 貳、研究流程與內容 11 第二章 文獻回顧 15 第一節 效率與公平在逕流分配中之關係 15 壹、逕流分配中效率之考慮 15 貳、逕流分配中公平之考慮 16 叁、分配效率與分配公平的概念化 19 第二節 逕流產生與影響 21 壹、逕流產生 21 貳、氣候變化和城市化導致的逕流增量 22 叁、逕流增加導致洪水風險的加大 27 一、洪水風險 27 二、洪水風險內部化 29 三、效率與公平分配對雨洪逕流內部化之影響 31 第三節 逕流分配在洪水綜合風險管理的作用 32 壹、洪水綜合風險管理 32 貳、美國洪水風險管理 34 叁、歐盟洪水風險管理 35 肆、臺灣綜合治水策略 36 第四節 有關土地逕流責任分配之議題 38 第五節 方法回顧 39 壹、效率觀點之方法回顧 39 貳、公平觀點之方法回顧 42 一、近遠距耦合方法 42 二、多區域輸入輸出模型 44 第六節 小結 45 第三章 研究設計與方法 48 第一節 資料來源 48 壹、研究資料來源 48 第二節 研究方法 48 壹、數據包絡分析(DEA)方法 48 一、基於CCR模型構建兩階段的DEA效率模型 49 二、基於兩階段DEA模型的洪水資源分配方法 52 貳、近遠程耦合 55 叁、多區域輸入輸出(MRIO)模型 56 肆、決策者偏好角度 58 第三節 研究架構 60 壹、總體研究架構 60 貳、效率觀點下的研究框架 62 叁、公平觀點下的研究框架 63 第四節 指標量測 64 壹、效率觀點下的指標選擇 64 貳、公平觀點下的指標選擇 66 叁、指標具體之描述 67 第四章 實證研究 70 第一節 量化雨洪逕流增量 70 壹、氣候變化下雨洪逕流的增量 70 一、氣候變遷整合評估模式TaiWAP 70 二、氣候變化的模擬 70 三、雨洪逕流的增量 71 貳、城市化下雨洪逕流的增量 73 叁、總體雨洪逕流量 75 第二節 效率觀點下的逕流分配 77 壹、數據分析 77 貳、流域生態效率比較 78 一、各行政區生態效率比較 78 二、上中下游生態效率比較 81 叁、效率觀點下的資源分配結果 82 一、各行政區的雨洪逕流分配 82 二、上中下游的雨洪逕流分配 84 第三節 公平觀點下的逕流分配 86 壹、數據分析 86 貳、近遠程耦合關係的梳理 87 叁、多區域輸入輸出模型分析結果 89 肆、公平角度下雨洪逕流的分配 91 一、各行政區的雨洪逕流分配 91 二、上中下游的雨洪逕流分配 93 三、各行政區的土地利用分類需要分擔的逕流量 94 第四節 決策者偏好對效率與公平的逕流分配之影響 97 壹、各行政區效率與公平分配的差異 97 貳、上中下游效率與公平分配的差異 99 叁、決策者偏好對雨洪逕流分配的影響 100 肆、規劃者的角色 104 第五章 研究討論 105 第一節 效率觀點下的討論 105 第二節 公平觀點下的討論 107 第三節 決策者偏好角度的討論 108 第六章 研究結果與建議 110 第一節 效率觀點下的研究結論 110 第二節 公平觀點下的研究結論 111 第三節 決策者偏好角度的結論 112 第四節 研究建議 114 參考文獻 116 附件1 相關表格 139 附件2 lingo程式編程語言 143

    Abhas, K. J., Robin, B., & Jessical, L. (2012). Cities and Flooding: A guide to integrated urban flood risk management for the 21st Century: The World Bank.
    Adikari, Y., Osti, R., & Noro, T. (2010). Flood-related disaster vulnerability: An impending crisis of megacities in Asia. Journal of Flood Risk Management, 3(3), 185-191. doi:https://doi.org/10.1111/j.1753-318X.2010.01068.x
    Aich, V., Liersch, S., Vetter, T., Fournet, S., Andersson, J. C. M., Calmanti, S., . . . Paton, E. N. (2016). Flood projections within the Niger River Basin under future land use and climate change. Science of the Total Environment, 562, 666-677. doi:https://doi.org/10.1016/j.scitotenv.2016.04.021
    Akter, T., Quevauviller, P., Eisenreich, S. J., & Vaes, G. (2018). Impacts of climate and land use changes on flood risk management for the Schijn River, Belgium. Environmental Science & Policy, 89, 163-175. doi:https://doi.org/10.1016/j.envsci.2018.07.002
    Alexander, M., Priest, S., & Mees, H. (2016). A framework for evaluating flood risk governance. Environmental Science & Policy, 64, 38-47. doi:https://doi.org/10.1016/j.envsci.2016.06.004
    An, Q., Wu, Q., Li, J., Xiong, B., & Chen, X. (2019). Environmental efficiency evaluation for Xiangjiang River basin cities based on an improved SBM model and Global Malmquist index. Energy Economics, 81, 95-103. doi:https://doi.org/10.1016/j.eneco.2019.03.022
    Anguelovski, I., Shi, L., Chu, E., Gallagher, D., Goh, K., Lamb, Z., . . . Teicher, H. (2016). Equity Impacts of Urban Land Use Planning for Climate Adaptation: Critical Perspectives from the Global North and South. Journal of Planning Education and Research, 36(3), 333-348. doi:https://doi.org/10.1177/0739456X16645166
    Arabi, B., Munisamy, S., & Emrouznejad, A. (2015). A new slacks-based measure of Malmquist-Luenberger index in the presence of undesirable outputs. Omega (United Kingdom), 51, 29-37. doi:https://doi.org/10.1016/j.omega.2014.08.006
    Arnold, J. L. (1988). The evolution of the 1936 flood control act: Office of History, US Army Corps of Engineers.
    Arnone, E., Pumo, D., Francipane, A., La Loggia, G., & Noto, L. V. (2018). The role of urban growth, climate change, and their interplay in altering runoff extremes. Hydrological Processes, 32(12), 1755-1770. doi:https://doi.org/10.1002/hyp.13141
    Banker, R. D., Charnes, A., & Cooper, W. W. (1984). SOME MODELS FOR ESTIMATING TECHNICAL AND SCALE INEFFICIENCIES IN DATA ENVELOPMENT ANALYSIS. Management Science, 30(9), 1078-1092. doi:https://doi.org/10.1287/mnsc.30.9.1078
    Barber, C. A., & Gleason, C. J. (2018). Verifying the prevalence, properties, and congruent hydraulics of at-many-stations hydraulic geometry (AMHG) for rivers in the continental United States. Journal of Hydrology, 556, 625-633. doi:https://doi.org/10.1016/j.jhydrol.2017.11.038
    Barendrecht, M. H., Viglione, A., & Blöschl, G. (2017). A dynamic framework for flood risk. Water Security, 1, 3-11. doi:https://doi.org/10.1016/j.wasec.2017.02.001
    Barredo, J. I. (2009). Normalised flood losses in Europe: 1970–2006. Natural Hazards and Earth System Sciences, 9(1), 97-104.
    Bates, V. (2012). ‘Misery Loves Company’: Sexual Trauma, Psychoanalysis and the Market for Misery. Journal of Medical Humanities, 33(2), 61-81. doi:https://doi.org/10.1007/s10912-012-9172-x
    Bekele, E. G., & Knapp, H. V. (2010). Watershed Modeling to Assessing Impacts of Potential Climate Change on Water Supply Availability. Water Resources Management, 24(13), 3299-3320. doi:https://doi.org/10.1007/s11269-010-9607-y
    Bergsma, E. (2019). The development of flood risk management in the United States. Environmental Science & Policy, 101, 32-37. doi:https://doi.org/10.1016/j.envsci.2019.07.013
    Berndtsson, R., Becker, P., Persson, A., Aspegren, H., Haghighatafshar, S., Jönsson, K., . . . Tussupova, K. (2019). Drivers of changing urban flood risk: A framework for action. Journal of Environmental Management, 240, 47-56. doi:https://doi.org/10.1016/j.jenvman.2019.03.094
    Bertilsson, L., Wiklund, K., de Moura Tebaldi, I., Rezende, O. M., Veról, A. P., & Miguez, M. G. (2019). Urban flood resilience – A multi-criteria index to integrate flood resilience into urban planning. Journal of Hydrology, 573, 970-982. doi:https://doi.org/10.1016/j.jhydrol.2018.06.052
    Beven, K. (2004). Robert E. Horton's perceptual model of infiltration processes. Hydrological Processes, 18(17), 3447-3460. doi:https://doi.org/10.1002/hyp.5740
    Bian, Y., & Yang, F. (2010). Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon’s entropy. Energy Policy, 38(4), 1909-1917. doi:https://doi.org/10.1016/j.enpol.2009.11.071
    Binder, C., Hinkel, J., Bots, P., & Pahl-Wostl, C. (2013). Comparison of frameworks for analyzing social-ecological systems. Ecology and Society, 18(4). doi:http://dx.doi.org/10.5751/ES-05551-180426
    Bithas, K. (2011). Sustainability and externalities: Is the internalization of externalities a sufficient condition for sustainability? Ecological Economics, 70(10), 1703-1706.
    Blessing, R., Brody, S. D., & Highfield, W. E. (2019). Valuing floodplain protection and avoidance in a coastal watershed. Disasters, 43(4), 906-925. doi:https://doi.org/10.1111/disa.12409
    Boithias, L., Terrado, M., Corominas, L., Ziv, G., Kumar, V., Marques, M., . . . Acuna, V. (2016). Analysis of the uncertainty in the monetary valuation of ecosystem services--A case study at the river basin scale. Sci Total Environ, 543(Pt A), 683-690. doi:https://doi.org/10.1016/j.scitotenv.2015.11.066
    Botzen, W. J. W., & Van Den Bergh, J. C. J. M. (2008). Insurance Against Climate Change and Flooding in the Netherlands: Present, Future, and Comparison with Other Countries. Risk Analysis, 28(2), 413-426. doi:https://doi.org/10.1111/j.1539-6924.2008.01035.x
    Bronstert, A., Niehoff, D., & Brger, G. (2002). Effects of climate and land-use change on storm runoff generation: Present knowledge and modelling capabilities. Hydrological Processes, 16(2), 509-529. doi:https://doi.org/10.1002/hyp.326
    Bryan Ellis , J., & Lian, L. (2016). Implementing sustainable drainage systems for urban surface water management within the regulatory framework in England and Wales. Journal of Environmental Management, 183(3), 630-636. doi:https://doi.org/10.1016/j.jenvman.2016.09.022
    Cai, W., Zhou, Z., Xia, J., Wang, W., Dou, C., & Zeng, Z. (2020). An advanced index of ecological Integrity (IEI) for assessing ecological efficiency of restauration revetments in river plain. Ecological Indicators, 108, 105762. doi:https://doi.org/10.1016/j.ecolind.2019.105762
    Cao, X., Zeng, W., Wu, M., Guo, X., & Wang, W. (2020). Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation. Agricultural Water Management, 231, 106027. doi:https://doi.org/10.1016/j.agwat.2020.106027
    Chang, B., Wherley, B., Aitkenhead-Peterson, J. A., & McInnes, K. J. (2021). Effects of urban residential landscape composition on surface runoff generation. Science of the Total Environment, 146977. doi:https://doi.org/10.1016/j.scitotenv.2021.146977
    Chang, H.-S., Man, C.-Y., & Su, Q. (2021). Research on the site selection of watershed public facilities as multi-use detention basin: an environmental efficiency perspective. Environmental Science and Pollution Research. doi:https://doi.org/10.1007/s11356-021-13515-3
    Chang, H.-S., Su, L.-Y., & Cheng, W.-H. (2018). Investigating Flood Mitigation Strategies Applying to Land-use Planning from a Perspective of Managing Public Runoff as a Shared Responsibility. City and Planning, 45(1), 81-101. doi:https://doi.org/10.6128/cp.45.1.81
    Chang, H.-S., & Su, Q. (2021). Exploring the coupling relationship of stormwater runoff distribution in watershed from the perspective of fairness. Urban Climate, 36, 100792. doi:https://doi.org/10.1016/j.uclim.2021.100792
    Chang, H.-S., Su, Q., & Katayama, T. (2020). Research on establishment of the region flood protection standard - a case of watershed of Dajiaxi, Taiwan. Urban Water Journal, 1-9. doi:https://doi.org/10.1080/1573062X.2020.1864831
    Chang, H.-S., Su, Q., & Katayama, T. (2021). Research on establishment of the region flood protection standard - a case of watershed of Dajiaxi, Taiwan. Urban Water Journal, 1-10. doi:https://doi.org/10.1080/1573062X.2020.1864831
    Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. doi:https://doi.org/10.1016/0377-2217(78)90138-8
    Chen, C. M., & Delmas, M. A. (2012). Measuring eco-inefficiency: A new frontier approach. Operations Research, 60(5), 1064-1079. doi:https://doi.org/10.1287/opre.1120.1094
    Chen, J., Theller, L., Gitau, M., Engel, B., & Harbor, J. (2016). Urbanization impacts on surface runoff of the contiguous United States. Journal of Environmental Management, 187. doi:https://doi.org/10.1016/j.jenvman.2016.11.017
    Chen, L., Wang, Y. M., & Lai, F. (2017). Semi-disposability of undesirable outputs in data envelopment analysis for environmental assessments. European Journal of Operational Research, 260(2), 655-664. doi:https://doi.org/10.1016/j.ejor.2016.12.042
    Chen, Y., Cook, W. D., Li, N., & Zhu, J. (2009). Additive efficiency decomposition in two-stage DEA. European Journal of Operational Research, 196(3), 1170-1176. doi:https://doi.org/10.1016/j.ejor.2008.05.011
    Chen, Y., Li, K. W., Xu, H., & Liu, S. (2009). A DEA-TOPSIS method for multiple criteria decision analysis in emergency management. Journal of Systems Science and Systems Engineering, 18(4), 489-507. doi:https://doi.org/10.1007/s11518-009-5120-3
    Chen, Y., Li, X., Liu, X., Zhang, Y., & Huang, M. (2019). Quantifying the teleconnections between local consumption and domestic land uses in China. Landscape and Urban Planning, 187, 60-69. doi:https://doi.org/10.1016/j.landurbplan.2019.03.011
    Cheng, C. (2013). Social vulnerability, green infrastructure, urbanization and climate change-induced flooding: A risk assessment for the Charles River watershed, Massachusetts, USA. University of Massachusetts Amherst,
    Choi, Y., Zhang, N., & Zhou, P. (2012). Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure. Applied Energy, 98, 198-208. doi:https://doi.org/10.1016/j.apenergy.2012.03.024
    Cook, W. D., & Seiford, L. M. (2009). Data envelopment analysis (DEA) - Thirty years on. European Journal of Operational Research, 192(1), 1-17. doi:https://doi.org/10.1016/j.ejor.2008.01.032
    Creed, I. F., & Meine, v. N. (2018). Forest and Water on a Changing Planet: Vulnerability, Adaptation and Governance Opportunities: A Global Assessment Report: International Union of Forest Research Organizations (IUFRO).
    Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3(1), 52-58. doi:https://doi.org/10.1038/nclimate1633
    Davis Todd, C. E., Goss, A. M., Tripathy, D., & Harbor, J. M. (2007). The Effects of Landscape Transformation in a Changing Climate on Local Water Resources. Physical Geography, 28(1), 21-36. doi:https://doi.org/10.2747/0272-3646.28.1.21
    de Andrade, M. M. N., & Szlafsztein, C. F. (2019). Coping, adaptation strategies, and institutional perception of hydrological risks in an urban Amazon city. Disasters, n/a(n/a). doi:https://doi.org/10.1111/disa.12414
    Deines, J. M., Liu, X., & Liu, J. (2016). Telecoupling in urban water systems: an examination of Beijing’s imported water supply. Water International, 41(2), 251-270. doi:https://doi.org/10.1080/02508060.2015.1113485
    Depietri, Y., Renaud, F. G., & Kallis, G. (2012). Heat waves and floods in urban areas: A policy-oriented review of ecosystem services. Sustainability Science, 7(1), 95-107. doi:https://doi.org/10.1007/s11625-011-0142-4
    Duran-Rodas, D., Villeneuve, D., Pereira, F. C., & Wulfhorst, G. (2020). How fair is the allocation of bike-sharing infrastructure? Framework for a qualitative and quantitative spatial fairness assessment. Transportation Research Part A: Policy and Practice, 140, 299-319. doi:https://doi.org/10.1016/j.tra.2020.08.007
    Dyckhoff, H., & Allen, K. (2001). Measuring ecological efficiency with data envelopment analysis (DEA). European Journal of Operational Research, 132(2), 312-325. doi:10.1016/S0377-2217(00)00154-5
    Easterling, W., & Apps, M. (2005). Assessing the consequences of climate change for food and forest resources: A view from the IPCC. Climatic Change, 70(1-2), 165-189. doi:https://doi.org/10.1007/s10584-005-5941-0
    Ellis, J. B., & Lundy, L. (2016). Implementing sustainable drainage systems for urban surface water management within the regulatory framework in England and Wales. Journal of Environmental Management, 183(3), 630-636. doi:https://doi.org/10.1016/j.jenvman.2016.09.022
    European commission. (2000). Water Framework Directive. Journal reference OJL, 327, 1-73.
    European Commission. (2014). Technical Report - 2014-078: Links between the Floods Directive (FD, 2007/60/EC) and Water Framework Directive (WFD, 2000/60/EC).
    Fan, Y., Bai, B., Qiao, Q., Kang, P., Zhang, Y., & Guo, J. (2017). Study on eco-efficiency of industrial parks in China based on data envelopment analysis. Journal of Environmental Management, 192, 107-115. doi:https://doi.org/10.1016/j.jenvman.2017.01.048
    Fang, B., Tan, Y., Li, C., Cao, Y., Liu, J., Schweizer, P.-J., . . . Hu, Z. (2016). Energy sustainability under the framework of telecoupling. Energy, 106, 253-259. doi:https://doi.org/10.1016/j.energy.2016.03.055
    Fang, C., & Ren, Y. (2017). Analysis of emergy-based metabolic efficiency and environmental pressure on the local coupling and telecoupling between
    urbanization and the eco-environment in the Beijing-Tianjin-Hebei urban agglomeration. Science China Earth Sciences(60), 1083–1097. doi:https://doi.org/10.1007/s11430-016-9038-6
    Faragò, M., Brudler, S., Godskesen, B., & Rygaard, M. (2019). An eco-efficiency evaluation of community-scale rainwater and stormwater harvesting in Aarhus, Denmark. Journal of Cleaner Production, 219, 601-612. doi:https://doi.org/10.1016/j.jclepro.2019.01.265
    Fidelis, T., & Rodrigues, C. (2019). The integration of land use and climate change risks in the Programmes of Measures of River Basin Plans – assessing the influence of the Water Framework Directive in Portugal. Environmental Science & Policy, 100, 158-171. doi:https://doi.org/10.1016/j.envsci.2019.06.013
    Fletcher, T. D., Andrieu, H., & Hamel, P. (2013). Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Advances in Water Resources, 51, 261-279. doi:https://doi.org/10.1016/j.advwatres.2012.09.001
    Garrote, J., Bernal, N., Díez-Herrero, A., Martins, L. R., & Bodoque, J. M. (2019). Civil engineering works versus self-protection measures for the mitigation of floods economic risk. A case study from a new classification criterion for cost-benefit analysis. International Journal of Disaster Risk Reduction, 37, 101157. doi:https://doi.org/10.1016/j.ijdrr.2019.101157
    Ghosh, T. K., Jakobsen, F., Joshi, M., & Pareta, K. (2019). Extreme rainfall and vulnerability assessment: case study of Uttarakhand rivers. Natural Hazards, 99(2), 665-687. doi:https://doi.org/10.1007/s11069-019-03765-3
    Grindlay, A. L., Zamorano, M., Rodríguez, M. I., Molero, E., & Urrea, M. A. (2011). Implementation of the European Water Framework Directive: Integration of hydrological and regional planning at the Segura River Basin, southeast Spain. Land Use Policy, 28(1), 242-256. doi:https://doi.org/10.1016/j.landusepol.2010.06.005
    Grizzetti, B., Lanzanova, D., Liquete, C., Reynaud, A., & Cardoso, A. C. (2016). Assessing water ecosystem services for water resource management. Environmental Science and Policy, 61, 194-203. doi:https://doi.org/10.1016/j.envsci.2016.04.008
    Guo, E., Zhang, J., Ren, X., Zhang, Q., & Sun, Z. (2014). Integrated risk assessment of flood disaster based on improved set pair analysis and the variable fuzzy set theory in central Liaoning Province, China. Natural Hazards, 74(2), 947-965. doi:https://doi.org/10.1007/s11069-014-1238-9
    Halkos, G. E., & Tzeremes, N. G. (2013). A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions. European Journal of Operational Research, 227(1), 182-189. doi:https://doi.org/10.1016/j.ejor.2012.12.009
    Hartmann, T. (2009). Clumsy floodplains and the law: Towards a responsive land policy for extreme floods. Built Environment, 35(4), 531-544. doi:https://doi.org/10.2148/benv.35.4.531
    Hartmann, T. (2012). Clumsy floodplains: Responsive land policy for extreme floods: Ashgate Publishing, Ltd.
    Hartmann, T., & Spit, T. (2016). Legitimizing differentiated flood protection levels - Consequences of the European flood risk management plan. Environmental Science and Policy, 55, 361-367. doi:https://doi.org/10.1016/j.envsci.2015.08.013
    Hawkins, J., Ma, C., Schilizzi, S., & Zhang, F. (2015). Promises and pitfalls in environmentally extended input-output analysis for China: A survey of the literature. Energy Economics, 48, 81-88. doi:https://doi.org/10.1016/j.eneco.2014.12.002
    He, P., Ng, T. S., & Su, B. (2017). Energy-economic recovery resilience with Input-Output linear programming models. Energy Economics, 68, 177-191. doi:https://doi.org/10.1016/j.eneco.2017.10.005
    Hersperger, A. M., Oliveira, E., Pagliarin, S., Palka, G., Verburg, P., Bolliger, J., & Grădinaru, S. (2018). Urban land-use change: The role of strategic spatial planning. Global Environmental Change, 51, 32-42. doi:https://doi.org/10.1016/j.gloenvcha.2018.05.001
    Hirsch, J. A., Stratton-Rayner, J., Winters, M., Stehlin, J., Hosford, K., & Mooney, S. J. (2019). Roadmap for free-floating bikeshare research and practice in North America. Transport Reviews, 39(6), 706-732. doi:https://doi.org/10.1080/01441647.2019.1649318
    Hoekstra, R. (2010). A complete database of peer-reviewed articles on environmentally extended input-output analysis. Towards 18th International Input-Output Conference of the International Input-Output Association (IIOA), 20-25.
    Hoyer, J., Dickhaut, W., Kronawitter, L., & Weber, B. (2011). Water Sensitive Urban Design: Principles and Inspiration for Sustainable Stormwater Management in the City of the Future.
    Hu, J.-L., & Kao, C.-H. (2007). Efficient energy-saving targets for APEC economies. Energy Policy, 35(1), 373-382. doi:https://doi.org/10.1016/j.enpol.2005.11.032
    Hu, J.-L., & Lee, Y.-C. (2008). Efficient three industrial waste abatement for regions in China. International Journal of Sustainable Development & World Ecology, 15(2), 132-144. doi:10.1080/13504500809469778
    Hu, J.-L., & Wang, S.-C. (2006). Total-factor energy efficiency of regions in China. Energy Policy, 34(17), 3206-3217. doi:https://doi.org/10.1016/j.enpol.2005.06.015
    Huang, X., Jin, H., & Bai, H. (2019). Vulnerability assessment of China's coastal cities based on DEA cross-efficiency model. International Journal of Disaster Risk Reduction, 36, 101091. doi:https://doi.org/10.1016/j.ijdrr.2019.101091
    IPCC. (2014). Climate change 2014–Impacts, adaptation and vulnerability: Regional aspects: Cambridge University Press.
    Kao, C., & Hwang, S. N. (2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research, 185(1), 418-429. doi:https://doi.org/10.1016/j.ejor.2006.11.041
    Kc, B., Shepherd, J. M., & Gaither, C. J. (2015). Climate change vulnerability assessment in Georgia. Applied Geography, 62, 62-74. doi:https://doi.org/10.1016/j.apgeog.2015.04.007
    Keessen, A., Vink, M. J., Wiering, M., Boezeman, D., Ernst, W., Mees, H., . . . van Eerd, M. C. J. (2016). Solidarity in water management. Ecology and Society, 21(4). doi:https://doi.org/10.5751/ES-08874-210435
    Kim, C.-R. (2019). Framework of extreme flood risk management in the typhoon country region. Tropical Cyclone Research and Review, 8(1), 35-45. doi:https://doi.org/10.1016/j.tcrr.2019.07.004
    Korhonen, P., & Syrjänen, M. (2004). Resource allocation based on efficiency analysis. Management Science, 50(8), 1134-1144. doi:https://doi.org/10.1287/mnsc.1040.0244
    Kundzewicz, Z. W., Su, B., Wang, Y., Xia, J., Huang, J., & Jiang, T. (2019). Flood risk and its reduction in China. Advances in Water Resources, 130, 37-45. doi:https://doi.org/10.1016/j.advwatres.2019.05.020
    Kuosmanen, T., & Kortelainen, M. (2007). Valuing environmental factors in cost–benefit analysis using data envelopment analysis. Ecological Economics, 62(1), 56-65. doi:https://doi.org/10.1016/j.ecolecon.2007.01.004
    Leontief, W. (1986). Input-output economics: Oxford University Press.
    Levitt, J. I., & Whitaker, M. C. (2009). Hurricane Katrina: America's unnatural disaster: U of Nebraska Press.
    Li, B., Shi, X., Lian, L., Chen, Y., Chen, Z., & Sun, X. (2020). Quantifying the effects of climate variability, direct and indirect land use change, and human activities on runoff. Journal of Hydrology, 584, 124684. doi:https://doi.org/10.1016/j.jhydrol.2020.124684
    Li, B., Zhang, W., & Yu, J. (2016). A study on total factor energy efficiency and its difference in resource-based cities in China with consideration of environmental constraints. J. Nat. Resour., 31(3), 377-389.
    Li, C., Liu, M., Hu, Y., Shi, T., Qu, X., & Walter, M. T. (2018). Effects of urbanization on direct runoff characteristics in urban functional zones. Science of the Total Environment, 643, 301-311. doi:https://doi.org/10.1016/j.scitotenv.2018.06.211
    Li, H., Yang, W., Zhou, Z., & Huang, C. (2013). Resource allocation models’ construction for the reduction of undesirable outputs based on DEA methods. Mathematical and Computer Modelling, 58(5), 913-926. doi:https://doi.org/10.1016/j.mcm.2012.10.026
    Li, Y., Lei, X., Dai, Q., & Liang, L. (2015). Performance evaluation of participating nations at the 2012 London Summer Olympics by a two-stage data envelopment analysis. European Journal of Operational Research, 243(3), 964-973. doi:https://doi.org/10.1016/j.ejor.2014.12.032
    Li, Y., Sun, L., Feng, T., & Zhu, C. (2013). How to reduce energy intensity in China: A regional comparison perspective. Energy Policy, 61, 513-522. doi:https://doi.org/10.1016/j.enpol.2013.06.007
    Lian, Y., Sun, M., Wang, J., Luan, Q., Jiao, M., Zhao, X., & Gao, X. (2021). Quantitative impacts of climate change and human activities on the runoff evolution process in the Yanhe River Basin. Physics and Chemistry of the Earth, Parts A/B/C, 102998. doi:https://doi.org/10.1016/j.pce.2021.102998
    Liao, C.-H. (2016). The spatial patterns and influenced factors of urban impervious surface ratio. National Cheng Kung Univercity,
    Lin, C.-Y., Chung, C.-P., & Lin, C.-R. (2009). A Study of Vegetation Coverage and Water Storage Capacity at Taichung Metropolitan Park Before and After development Journal of Soil and Water Conservation, 41(1), 31-44.
    Lin, Z. (2016). Impacts of Low Impact Development on Highlands Drainage -A Case Study of Lin-Kou New Town. Dissertation of Institute of Civil Engineering, National Taiwan University.
    Liu, G., Wei, L., Gu, J., Zhou, T., & Liu, Y. (2020). Benefit distribution in urban renewal from the perspectives of efficiency and fairness: A game theoretical model and the government's role in China. Cities, 96, 102422. doi:https://doi.org/10.1016/j.cities.2019.102422
    Liu, J. (2014). Forest Sustainability in C hina and Implications for a Telecoupled World. Asia & the Pacific Policy Studies, 1(1), 230-250. doi: https://doi.org/10.1002/app5.17
    Liu, J., Hull, V., Batistella, M., DeFries, R., Dietz, T., Fu, F., . . . Li, S. (2013). Framing sustainability in a telecoupled world. Ecology and Society. doi:http://dx.doi.org/10.5751/ES-05873-180226
    Liu, J., Hull, V., Luo, J., Yang, W., & Liu, W. (2015). Multiple telecouplings and their complex interrelationships. Ecology and Society, 20(3). doi:http://dx.doi.org/10.5751/ES-07868-200344
    Liu, J., Hull, V., Moran, E., Nagendra, H., Swaffield, S. R., & Turner, B. (2014). Applications of the telecoupling framework to land-change science. In Rethinking global land use in an urban era (pp. 119-140): MIT Press.
    Liu, J., & Yang, W. (2013). Integrated assessments of payments for ecosystem services programs. Proceedings of the National Academy of Sciences, 110(41), 16297-16298. doi:https://doi.org/10.1073/pnas.1316036110
    Liu, J., Yang, W., & Li, S. (2016). Framing ecosystem services in the telecoupled Anthropocene. Frontiers in Ecology and the Environment, 14(1), 27-36. doi: https://doi.org/10.1002/16-0188.1
    Liu, J., Zhang, Q., Singh, V. P., & Shi, P. (2017). Contribution of multiple climatic variables and human activities to streamflow changes across China. Journal of Hydrology, 545, 145-162. doi:https://doi.org/10.1016/j.jhydrol.2016.12.016
    Liu, K., Li, X., & Wang, S. (2021). Characterizing the spatiotemporal response of runoff to impervious surface dynamics across three highly urbanized cities in southern China from 2000 to 2017. International Journal of Applied Earth Observation and Geoinformation, 100, 102331. doi:https://doi.org/10.1016/j.jag.2021.102331
    Lu, X., & Xu, C. (2019). The difference and convergence of total factor productivity of inter-provincial water resources in China based on three- stage DEA-Malmquist index model. Sustainable Computing: Informatics and Systems, 22, 75-83. doi:https://doi.org/10.1016/j.suscom.2019.01.019
    Ma, J. (2015). A two-stage DEA model considering shared inputs and free intermediate measures. Expert Systems with Applications, 42(9), 4339-4347. doi:https://doi.org/10.1016/j.eswa.2015.01.040
    Ma, X., Liu, Y., Wei, X., Li, Y., Zheng, M., Li, Y., . . . Yu, Y. (2017). Measurement and decomposition of energy efficiency of Northeast China—based on super efficiency DEA model and Malmquist index. Environmental Science and Pollution Research, 24(24), 19859-19873. doi:https://doi.org/10.1007/s11356-017-9441-3
    Ma, Z., Hu, J., , P. F., Gao, Q., Qu, S., Song, W., & Liu, J. (2017). Assessment of Climate Technology Demands in Chinese Sponge City. Journal of Geoscience and Environment Protection, 5(12), 102-116. doi:10.4236/gep.2017.512008
    Marselis, S. M., Feng, K., Liu, Y., Teodoro, J. D., & Hubacek, K. (2017). Agricultural land displacement and undernourishment. Journal of Cleaner Production, 161, 619-628. doi:https://doi.org/10.1016/j.jclepro.2017.05.125
    McCord, P., Tonini, F., & Liu, J. (2018). The Telecoupling GeoApp: A Web-GIS application to systematically analyze telecouplings and sustainable development. Applied Geography, 96, 16-28. doi:https://doi.org/10.1016/j.apgeog.2018.05.001
    Meerow, S., Pajouhesh, P., & Miller, T. R. (2019). Social equity in urban resilience planning. Local Environment, 24(9), 793-808. doi:https://doi.org/10.1080/13549839.2019.1645103
    Mikša, K., Kalinauskas, M., Inácio, M., & Pereira, P. (2021). Implementation of the European Union Floods Directive—Requirements and national transposition and practical application: Lithuanian case-study. Land Use Policy, 100, 104924. doi:https://doi.org/10.1016/j.landusepol.2020.104924
    Mileti, D. (1999). Disasters by Design: A Reassessment of Natural Hazards in the United States. Washington, DC: The National Academies Press.
    Mostert, E. (2003). The European Water Framework Directive and water management research. Physics and Chemistry of the Earth, Parts A/B/C, 28(12), 523-527. doi:https://doi.org/10.1016/S1474-7065(03)00089-5
    Mustafa, A., Bruwier, M., Archambeau, P., Erpicum, S., Pirotton, M., Dewals, B., & Teller, J. (2018). Effects of spatial planning on future flood risks in urban environments. Journal of Environmental Management, 225, 193-204. doi:https://doi.org/10.1016/j.jenvman.2018.07.090
    OECD. (2001). Measuring Capital--OECD Manual: Measurement of Capital Stocks, Consumption of Fixed Capital and Capital Services: Organisation for Economic Co-operation and Development.
    OECD. (2015). OECD principles on water governance (Daegu Declaration). In.
    Ovando, P., & Brouwer, R. (2019). A review of economic approaches modeling the complex interactions between forest management and watershed services. Forest Policy and Economics, 100, 164-176. doi:https://doi.org/10.1016/j.forpol.2018.12.007
    Pan, J. (2018). Planning Framework for Watershed Subdivision Level of Urban Runoff Allocation Schemes. National Cheng Kung University, Taiwan.
    Praskievicz, S., & Chang, H. (2009). A review of hydrological modelling of basin-scale climate change and urban development impacts. Progress in Physical Geography, 33(5), 650-671. doi:https://doi.org/10.1177/0309133309348098
    Prince George's County. (1999). Low-impact Development Design Strategies: An Integrated Design Approach.
    Prudhomme, C., & Davies, H. (2009). Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: future climate. Climatic Change, 93(1-2), 197-222.
    Rao, K. K., Patwardhan, S. K., Kulkarni, A., Kamala, K., Sabade, S. S., & Kumar, K. K. (2014). Projected changes in mean and extreme precipitation indices over India using PRECIS. Global and Planetary Change, 113, 77-90. doi:https://doi.org/10.1016/j.gloplacha.2013.12.006
    Rashidi, K., Shabani, A., & Farzipoor Saen, R. (2015). Using data envelopment analysis for estimating energy saving and undesirable output abatement: A case study in the Organization for Economic Co-Operation and Development (OECD) countries. Journal of Cleaner Production, 105, 241-252. doi:https://doi.org/10.1016/j.jclepro.2014.07.083
    Reza, K. M., Saen, R. F., & Goh, M. (2019). Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: A big data approach. Technological Forecasting and Social Change, 144, 553-562. doi:https://doi.org/10.1016/j.techfore.2018.01.035
    Riebau, M. A. (2000). The importance of maps for floodplain management and flood insurance. Flood Issues in Contemporary Water Management, 167-176.
    Rodrigues, C., & Fidélis, T. (2019). The integration of land use in public water reservoirs plans – A critical analysis of the regulatory approaches used for the protection of banks. Land Use Policy, 81, 762-775. doi:https://doi.org/10.1016/j.landusepol.2018.10.047
    Roon, M., Dixon, J., & Roon, H. (2005). Reformulating planning tools to promote low impact urban design and development. New Zealand.
    Roos, M. M. D., Hartmann, T. T., Spit, T. T. J. M., & Johann, G. G. (2017). Constructing risks – Internalisation of flood risks in the flood risk management plan. Environmental Science & Policy, 74, 23-29. doi:https://doi.org/10.1016/j.envsci.2017.04.007
    Sahoo, B. K., Luptacik, M., & Mahlberg, B. (2011). Alternative measures of environmental technology structure in DEA: An application. European Journal of Operational Research, 215(3), 750-762. doi:https://doi.org/10.1016/j.ejor.2011.07.017
    Schaltegger, S., & Sturm, A. (1990). Ecological rationality: Approaches to design of ecology-oriented management instruments. Die Unternehmung, 4, 273-290.
    SDLDBSE. (2019). Climate change integration assessment model-TaiWAP. Retrieved from http://sdl.ae.ntu.edu.tw/TaiWAP/
    Seiford, L. M., & Zhu, J. (1999). Profitability and marketability of the top 55 U.S. commercial banks. Management Science, 45(9), 1270-1288. doi:https://doi.org/10.1287/mnsc.45.9.1270
    Seiford, L. M., & Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation. European Journal of Operational Research, 142(1), 16-20. doi:https://doi.org/10.1016/S0377-2217(01)00293-4
    Shao, M., Zhao, G., Kao, S.-C., Cuo, L., Rankin, C., & Gao, H. (2020). Quantifying the effects of urbanization on floods in a changing environment to promote water security — A case study of two adjacent basins in Texas. Journal of Hydrology, 589, 125154. doi:https://doi.org/10.1016/j.jhydrol.2020.125154
    Shi, J. H., & Yang, W. M. (2008). Vulnerability assessment of natural disasters in pudong district. Journal of Shaanxi Normal University, 4(36), 24-27.
    Slobodkin, L. B. (2019). Ecological Efficiency. In B. Fath (Ed.), Encyclopedia of Ecology (Second Edition) (pp. 325-330). Oxford: Elsevier.
    Smith, K. (2013). Environmental Hazards: Assessing Risk and Reducing Disaster. Routledge.
    Song, M., An, Q., Zhang, W., Wang, Z., & Wu, J. (2012). Environmental efficiency evaluation based on data envelopment analysis: A review. Renewable and Sustainable Energy Reviews, 16(7), 4465-4469. doi:https://doi.org/10.1016/j.rser.2012.04.052
    Spillett, P. B., Evans, S. G., & Colquhoun, K. (2005). International Perspective on BMPs/SUDS: UK-Sustainable Stormwater Management in the UK. World Water and Environmental Resources Congress, 196.
    Stone, D. A. (2008). Predicted climate changes for the years to come and implications for disease impact studies. Rev Sci Tech, 27(2), 319-330.
    Su, Q. (2020). Long-term flood risk assessment of watersheds under climate change based on the game cross-efficiency DEA. Natural Hazards, 104(3), 2213-2237. doi:https://doi.org/10.1007/s11069-020-04269-1
    Su, Q., & Chang, H.-S. (2020). Exploring the spatial development of watershed and the allocation of stormwater runoff from the perspective of ecological efficiency based on DEA method.
    Sueyoshi, T., Goto, M., & Snell, M. A. (2013). DEA environmental assessment: Measurement of damages to scale with unified efficiency under managerial disposability or environmental efficiency. Applied Mathematical Modelling, 37(12-13), 7300-7314. doi:https://doi.org/10.1016/j.apm.2013.02.027
    Sueyoshi, T., & Yuan, Y. (2017). Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention. Energy Economics, 66, 154-166. doi:https://doi.org/10.1016/j.eneco.2017.06.008
    Sun, J., Li, G., & Wang, Z. (2019). Technology heterogeneity and efficiency of China’s circular economic systems: A game meta-frontier DEA approach. Resources, Conservation and Recycling, 146, 337-347. doi:https://doi.org/10.1016/j.resconrec.2019.03.046
    Surminski, S., & Thieken, A. H. (2017). Promoting flood risk reduction: The role of insurance in Germany and England. Earth's Future, 5(10), 979-1001. doi: https://doi.org/10.1002/2017EF000587
    The USA Department of Agriculture. (2001). Stream Corridor Restoration: Principles, Processes, and Practices. The USA Retrieved from https ://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/16/stelprdb1043458.pdf.
    Tonini, F., & Liu, J. (2017). Telecoupling Toolbox: spatially explicit tools for studying telecoupled human and natural systems. Ecology and Society, 22(4). doi:https://doi.org/10.5751/ES-09696-220411
    UNISDR, & CRED. (2015). The human cost of weather-related disasters 1995–2015. Geneva, Switzerland: UNISDR. doi:https://doi.org/10.1017/CBO9781107415324.004
    US EPA. (2007). Green Infrastructure Statement of Intent.
    Wang, S., Li, Z. J., & Miao, L. (2015). Comparison of microsphere digital PCR and real-time fluorescence PCR for detection mutton-derived and porcine-derived ingredients in mutton products. Meat Industry, 7, 38-41.
    White, D. J., Hubacek, K., Feng, K., Sun, L., & Meng, B. (2018). The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis. Applied Energy, 210, 550-567. doi:https://doi.org/10.1016/j.apenergy.2017.05.159
    Whitehead, P. G., Jin, L., Macadam, I., Janes, T., Sarkar, S., Rodda, H. J. E., . . . Nicholls, R. J. (2018). Modelling impacts of climate change and socio-economic change on the Ganga, Brahmaputra, Meghna, Hooghly and Mahanadi river systems in India and Bangladesh. Science of the Total Environment, 636, 1362-1372. doi:https://doi.org/10.1016/j.scitotenv.2018.04.362
    Wong, Y.-L. (2001). Watershed Planning Based on the Ecosystem Management Concept - A Case Study for the Keelung River in Taiwan. National Taipei University, Taiwan.
    Woo, C., Chung, Y., Chun, D., Seo, H., & Hong, S. (2015). The static and dynamic environmental efficiency of renewable energy: A Malmquist index analysis of OECD countries. Renewable and Sustainable Energy Reviews, 47, 367-376. doi:https://doi.org/10.1016/j.rser.2015.03.070
    Wright, J. M. (2000). The Nation's Responses to Flood Disasters: a historical account.
    Wu, F., Fan, L. W., Zhou, P., & Zhou, D. Q. (2012). Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis. Energy Policy, 49, 164-172. doi:https://doi.org/10.1016/j.enpol.2012.05.035
    Wu, H., Bolte, J. P., Hulse, D., & Johnson, B. R. (2015). A scenario-based approach to integrating flow-ecology research with watershed development planning. Landscape and Urban Planning, 144, 74-89. doi:https://doi.org/10.1016/j.landurbplan.2015.08.012
    Wu, J., An, Q., Xiong, B., & Chen, Y. (2013). Congestion measurement for regional industries in China: A data envelopment analysis approach with undesirable outputs. Energy Policy, 57, 7-13. doi:https://doi.org/10.1016/j.enpol.2012.02.062
    Wu, J., Yin, P., Sun, J., Chu, J., & Liang, L. (2016). Evaluating the environmental efficiency of a two-stage system with undesired outputs by a DEA approach: An interest preference perspective. European Journal of Operational Research, 254(3), 1047-1062. doi:https://doi.org/10.1016/j.ejor.2016.04.034
    Wu, J., Zhu, Q., Ji, X., Chu, J., & Liang, L. (2016). Two-stage network processes with shared resources and resources recovered from undesirable outputs. European Journal of Operational Research, 251(1), 182-197. doi:https://doi.org/10.1016/j.ejor.2015.10.049
    Xing, Z., Wang, J., & Zhang, J. (2018). Total-factor ecological efficiency and productivity in Yangtze River Economic Belt, China: A non-parametric distance function approach. Journal of Cleaner Production, 200, 844-857. doi:https://doi.org/10.1016/j.jclepro.2018.08.015
    Xu, H., Ma, C., Lian, J., Xu, K., & Chaima, E. (2018). Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China. Journal of Hydrology, 563, 975-986. doi:https://doi.org/10.1016/j.jhydrol.2018.06.060
    Yang, L., Ouyang, H., Fang, K., Ye, L., & Zhang, J. (2015). Evaluation of regional environmental efficiencies in China based on super-efficiency-DEA. Ecological Indicators, 51, 13-19. doi:https://doi.org/10.1016/j.ecolind.2014.08.040
    Yang, L., & Wang, K.-L. (2013). Regional differences of environmental efficiency of China’s energy utilization and environmental regulation cost based on provincial panel data and DEA method. Mathematical and Computer Modelling, 58(5), 1074-1083. doi:https://doi.org/10.1016/j.mcm.2012.04.004
    Yang, L., & Wang, K. L. (2013). Regional differences of environmental efficiency of China's energy utilization and environmental regulation cost based on provincial panel data and DEA method. Mathematical and Computer Modelling, 58(5-6), 1074-1083. doi:https://doi.org/10.1016/j.mcm.2012.04.004
    Yang, Z., & Wei, X. (2019). The measurement and influences of China's urban total factor energy efficiency under environmental pollution: Based on the game cross-efficiency DEA. Journal of Cleaner Production, 209, 439-450. doi:https://doi.org/10.1016/j.jclepro.2018.10.271
    Yao, L., Wu, Z., Wang, Y., Sun, S., Wei, W., & Xu, Y. (2020). Does the spatial location of green roofs affects runoff mitigation in small urbanized catchments? Journal of Environmental Management, 268, 110707. doi:https://doi.org/10.1016/j.jenvman.2020.110707
    Yin, D., Evans, B., Wang, Q., Chen, Z., Jia, H., Chen, A. S., . . . Leng, L. (2020). Integrated 1D and 2D model for better assessing runoff quantity control of low impact development facilities on community scale. Science of the Total Environment, 720, 137630. doi:https://doi.org/10.1016/j.scitotenv.2020.137630
    Yin, J., Ye, M., Yin, Z., & Xu, S. (2015). A review of advances in urban flood risk analysis over China. Stochastic Environmental Research and Risk Assessment, 29(3), 1063-1070. doi:https://doi.org/10.1007/s00477-014-0939-7
    Young, I. (2006). Katrina: Too much blame, not enough responsibility. Dissent(WINTER), 41.
    Yu, Y., Feng, K., Hubacek, K., & Sun, L. (2016). Global Implications of China's Future Food Consumption. Journal of Industrial Ecology, 20(3), 593-602. doi:https://doi.org/10.1111/jiec.12392
    Yuan, Y. Z., Zhang, Z. D., & Meng, J. H. (2015). Impact of changes in land use and climate on the runoff in Liuxihe Watershed based on SWAT model. Chinese Journal of Applied Ecology, 26(4), 989-998.
    Zhang, C., & Anadon, L. D. (2014). A multi-regional input-output analysis of domestic virtual water trade and provincial water footprint in China. Ecological Economics, 100, 159-172. doi:https://doi.org/10.1016/j.ecolecon.2014.02.006
    Zhang, J., Zhang, H., Xiao, H., Fang, H., Han, Y., & Yu, L. (2020). Effects of rainfall and runoff-yield conditions on runoff. Ain Shams Engineering Journal. doi:https://doi.org/10.1016/j.asej.2020.10.010
    Zhao, X., Liu, J., Liu, Q., Tillotson, M. R., Guan, D., & Hubacek, K. (2015). Physical and virtual water transfers for regional water stress alleviation in China. Proceedings of the National Academy of Sciences of the United States of America, 112(4), 1031-1035. doi:https://doi.org/10.1073/pnas.1404130112
    Zhou, Q., Leng, G., Su, J., & Ren, Y. (2019). Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation. Science of the Total Environment, 658, 24-33. doi:https://doi.org/10.1016/j.scitotenv.2018.12.184
    Zhou, Y., Xing, X., Fang, K., Liang, D., & Xu, C. (2013). Environmental efficiency analysis of power industry in China based on an entropy SBM model. Energy Policy, 57, 68-75. doi:https://doi.org/10.1016/j.enpol.2012.09.060
    Zhu, Q., Wu, J., Li, X., & Xiong, B. (2017). China's regional natural resource allocation and utilization: a DEA-based approach in a big data environment. Journal of Cleaner Production, 142, 809-818. doi:https://doi.org/10.1016/j.jclepro.2016.02.100
    Zhu, Z., Chen, Z., Chen, X., & He, P. (2016). Approach for evaluating inundation risks in urban drainage systems. Science of the Total Environment, 553, 1-12. doi:https://doi.org/10.1016/j.scitotenv.2016.02.025
    陳正惠. (2014). 绿色公路径流抑制設施功能評估. 国立科技大学土木与防灾研究所碩士論文,
    國土測繪中心. (2018). 國土利用現況調查成果. http://maps.nlsc.gov.tw//pro/use_clause.jsp
    經濟部水利署水利規劃試驗所. (2018). 逕流分擔與出流管制技術手冊訂定.
    台大生工系永續發展研究室. (2019). 氣候變遷整合評估模式 TaiWAP. Retrieved from http://sdl.ae.ntu.edu.tw/TaiWAP/
    台灣災害防救會報. (2018). 防災救災白皮書. Retrieved from https://cdprc.ey.gov.tw/Page/1AB65D19DB24F9CF.
    謝燕華. (2014). 雨水和污水管理整合之永續社區水循環研究-以奇岩生態社區為例. 國立臺北科技大學建築系研究所碩士論文.
    楊淑敏. (1998). 區域性系統供水潛能分析. 國立台灣大學土木工程學研究所碩士論文.
    叶克家. (1999). 都市地区淹水改善措施之效益评估研究. 国立交通大学土木工程学系碩士論文.
    張學聖, & 廖晉賢. (2015). 與水共生的空間規劃途徑-以曾文溪流域為例. 建築與規劃學報, 16(2&3), 183-200.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE