簡易檢索 / 詳目顯示

研究生: 楊心綸
Yang, Hsin-Lun
論文名稱: 探討熱機製程參數對AA1100鋁合金再結晶行為之影響
Effects of Thermo-mechanical Parameters on Recrystallization Behaviors of AA1100 Aluminum Alloy
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 107
中文關鍵詞: AA1100鋁合金熱機械製程再結晶晶粒尺寸集合組織EBSD
外文關鍵詞: AA1100 aluminum alloy, Thermo-mechanical process, Recrystallization, Grain size, Texture, EBSD
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非熱處理型鋁片一般常見的成型加工為深衝,經深衝變形後會產生凸耳現象,此與集合組織之異向性行為有相關聯性,鋁製成品於成形前須經過多道製程加工,根據前人研究,鋁板製程後段的冷軋製程及後續熱處理對集合組織的影響相當有限,因此需要在前段之熱機械製程以得到適當之集合組織,而影響其集合組織的分布即為熱機械加工製程參數,同時亦會影響晶粒尺寸之分布,其反應材料特性則為機械性質之表現,而由熱軋轉至盤捲自退火製程中將涉及微結構之變化,即再結晶之演化,因此,本研究中將聚焦於盤捲自退火製程,探討熱機製程參數對鋁合金再結晶行為之影響,並進而以再結晶為主觀察其對晶粒特性及集合組織的影響。
    本研究利用EBSD分析工具量測AA1100鋁合金熱軋後經盤捲自退火於不同退火狀態下之晶粒特性與集合組織組成與分布,並建立再結晶比例演化模型、晶粒尺寸演化模型及集合組織演化模型以預測退火後微結構及集合組織之趨勢變化,最後以各模型中表示動力學之參數連結熱機製程參數對再結晶行為之影響。
    實驗結果顯示當製程參數條件為低溫度、高應變速率以及高軋延量,此時完成再結晶速度達最快,而當製程參數條件為低溫度、高應變速率及低軋延量和高溫度、低應變速率及高軋延量,此時完成再結晶速度為最慢。再結晶對晶粒尺寸之影響中可觀察到當製程參數為低溫度、高應變速率以及高軋延量,此時晶粒成長速度最快;當製程參數條件為高溫度、低應變速率及高軋延量,此時晶粒成長速度愈慢。另外,由再結晶對集合組織之影響中可觀察到,針對變形集合組織,當熱機製程參數為低溫度、高應變速率及高軋延量,會促使C和B的衰減,而當製程條件為高溫度、低應變速率及高軋延量,也會促使B的衰減;針對再結晶集合組織,當熱機製程參數為低溫度、高應變速率及低軋延量,將會促使Cube與 RC20°RD的生成。

    Temperature, strain rate and strain are essential parameters during hot rolling and coiling processes. These factors directly affect the microstructure and texture of aluminum sheets, and strongly determine the final microstructural characteristics of aluminum alloys. Thus, the control and optimization of these parameters are crucial for achieving the desired material properties and performance. The hot-rolled and annealed AA1100 aluminum alloys were measured by electron backscatter diffraction. The results show that the fastest recrystallization rate occurs at conditions of low temperature, high strain rate and high strain. However, the recrystallization rate decreases when the strain decreases or when decrease in the temperature and strain rate simultaneously.

    中文摘要 I Extended Abstract III 誌謝 XII 目錄 XV 圖目錄 XVIII 表目錄 XXV 第一章 前言 1 第二章 文獻回顧 3 2.1 熱軋加工後鋁板晶粒特性之演化 3 2.2 熱軋加工後鋁板集合組織之演化 8 2.3 退火熱處理後鋁板晶粒特性之演化 12 2.4 退火熱處理後鋁板集合組織之演化 16 第三章 實驗及分析方法 19 3.1 實驗材料 19 3.2 實驗流程及試片製備方法 20 3.2.1 實驗流程 20 3.2.2 試片製備方法 23 3.2.3 EBSD分析 25 3.3 再結晶分析 26 3.3.1 再結晶晶粒定義 26 3.3.2 再結晶比例演化模型 31 3.4 晶粒尺寸分析 33 3.4.1 晶粒尺寸分析 33 3.4.2 晶粒尺寸演化模型 35 3.5 集合組織分析 37 3.5.1 集合組織分析 37 3.5.2 集合組織演化模型 42 第四章 實驗結果 43 4.1 再結晶比例分析 43 4.1.1 中等軋延量60%之再結晶比例 44 4.1.2 高等軋延量85%之再結晶比例 46 4.2 晶粒尺寸分析 49 4.2.1 中等軋延量60%之晶粒尺寸 49 4.2.2 高等軋延量85%之晶粒尺寸 52 4.3 集合組織分析 55 4.3.1 中等軋延量60%之集合組織 55 4.3.2 高等軋延量85%之集合組織 60 第五章 討論 68 5.1 製程參數對再結晶n值之影響 68 5.2 晶粒重建對晶粒尺寸之影響 73 5.3 再結晶對晶粒尺寸之影響 80 5.4 再結晶對集合組織之影響 85 第六章 結論 95 參考文獻 96 附錄 102

    1.J.-H. Yoon, O. Cazacu, J. Whan Yoon, and R.E. Dick, Earing predictions for strongly textured aluminum sheets. International Journal of Mechanical Sciences, 2010. 52: pp. 1563-1578.
    2.O. Engler and J. Hirsch, Polycrystal-plasticity simulation of six and eight ears in deep-drawn aluminum cups. Materials Science and Engineering: A, 2007. 452-453: pp. 640-651.
    3.G.E.G. Tucker, Texture and earing in deep drawing of aluminium. Acta Metallurgica, 1961. 9: pp. 275-286.
    4.O. Engler and S. Kalz, Simulation of earing profiles from texture data by means of a visco-plastic self-consistent polycrystal plasticity approach. Materials Science and Engineering: A, 2004. 373: pp. 350-362.
    5.O. Engler, Control of texture and earing in aluminium alloy AA 3105 sheet for packaging applications. Materials Science and Engineering: A, 2012. 538: pp. 69-80.
    6.O. Engler, Modelling of Microstructure and Texture and the Resulting Properties during the Thermo-Mechanical Processing of Aluminium Sheets. Materials Science Forum, 2006. 519-521: pp. 1563-1568.
    7.K.F. Karhausen and O. Seiferth, Aluminium Hot and Cold Rolling, in Encyclopedia of Lubricants and Lubrication, T. Mang, Editor. 2014, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 27-45.
    8.毛卫民, 金属材料的晶体学织构与各向异性. 2002: 科学出版社.
    9.H.R. Rezaei Ashtiani, M.H. Parsa, and H. Bisadi, Constitutive equations for elevated temperature flow behavior of commercial purity aluminum. Materials Science and Engineering: A, 2012. 545: pp. 61-67.
    10.D. Raabe, F. Roters, F. Barlat, and L.-Q. Chen, Continuum Scale Simulation of Engineering Materials: Fundamentals - Microstructures - Process Applications. 2006.
    11.C. Maurice and J.H. Driver, Hot rolling textures of f.c.c. metals—Part I. Experimental results on Al single and polycrystals. Acta Materialia, 1997. 45: pp. 4627-4638.
    12.J.R. Hirsch, Correlation of deformation texture and microstructure. Materials Science and Technology, 1990. 6: pp. 1048-1057.
    13.O. Dalland and E. Nes, Origin of cube texture during hot rolling of commercial AlMnMg alloys. Acta Materialia, 1996. 44: pp. 1389-1411.
    14.H. Weiland and J.R. Hirsch, Microstructure and Local Texture in Hot Rolled Aluminum. Textures and Microstructures, 1991. 14: pp. 523181.
    15.J. Humphreys, G.S. Rohrer, and A. Rollett, Chapter 1 - Introduction, in Recrystallization and Related Annealing Phenomena (Third Edition), J. Humphreys, G.S. Rohrer, and A. Rollett, Editors. 2017, Elsevier: Oxford. p. 1-11.
    16.J. Hirsch, Texture evolution during rolling of aluminium alloys. TMS Light Metals, 2008: pp. 1071-1077.
    17.O. Engler, J. Hirsch, and K. Lücke, Texture development in Al-1.8 wt% Cu depending on the precipitation state—II. Recrystallization textures. Acta Metallurgica et Materialia, 1995. 43: pp. 121-138.
    18.O. Engler, H.E. Vatne, and E. Nes, The roles of oriented nucleation and oriented growth on recrystallization textures in commercial purity aluminium. Materials Science and Engineering: A, 1996. 205: pp. 187-198.
    19.J. Humphreys, G.S. Rohrer, and A. Rollett, Chapter 12 - Recrystallization Textures, in Recrystallization and Related Annealing Phenomena (Third Edition), J. Humphreys, G.S. Rohrer, and A. Rollett, Editors. 2017, Elsevier: Oxford. p. 431-468.
    20.M.L. Taheri, D. Molodov, G. Gottstein, and A.D. Rollett, Grain boundary mobility under a stored-energy driving force: a comparison to curvature-driven boundary migration. International Journal of Materials Research, 2005. 96: pp. 1166-1170.
    21.D.A. Molodov, U. Czubayko, G. Gottstein, and L.S. Shvindlerman, On the effect of purity and orientation on grain boundary motion. Acta Materialia, 1998. 46: pp. 553-564.
    22.M.L. Taheri, A.D. Rollett, and H. Weiland, In-Situ Quantification of Solute Effects on Grain Boundary Mobility and Character in Aluminum Alloys During Recrystallization. Materials Science Forum, 2004. 467-470: pp. 997-1002.
    23.B. Ren and J.G. Morris, Microstructure and texture evolution of Al during hot and cold rolling. Metallurgical and Materials Transactions A, 1995. 26: pp. 31-40.
    24.S. Wright, J. Kacher, and T. Ruggles, Electron Backscatter Diffraction based Strain Analysis in the Scanning Electron Microscope. 2021: Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
    25.Q. Liu, D. Juul Jensen, and N. Hansen, Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium. Acta Materialia, 1998. 46: pp. 5819-5838.
    26.D.P. Field, C.C. Merriman, N. Allain-Bonasso, and F. Wagner, Quantification of dislocation structure heterogeneity in deformed polycrystals by EBSD. Modelling and Simulation in Materials Science and Engineering, 2012. 20: pp. 024007.
    27.A. Faleiros, T.N. Rabelo, G. Thim, and M. Oliveira, Kinetics of Phase Change. Materials Research, 2000. 3: pp.51-60.
    28.M.A. Wells, I.V. Samarasekera, J.K. Brimacombe, E.B. Hawbolt, and D.J. Lloyd, Modeling the microstructural changes during hot tandem rolling of AA5XXX aluminum alloys: Part I. Microstructural evolution. Metallurgical and Materials Transactions B, 1998. 29: pp. 611-620.
    29.T. Sheppard and X. Duan, Modelling of static recrystallisation by the combination of empirical models with the finite element method. Journal of Materials Science, 2003. 38: pp. 1747-1754.
    30.J. Humphreys, G.S. Rohrer, and A. Rollett, Chapter 7 - Recrystallization of Single-Phase Alloys, in Recrystallization and Related Annealing Phenomena (Third Edition), J. Humphreys, G.S. Rohrer, and A. Rollett, Editors. 2017, Elsevier: Oxford. p. 245-304.
    31.H. Hu and B.B. Rath, On the time exponent in isothermal grain growth. Metallurgical Transactions, 1970. 1: pp. 3181-3184.
    32.J. Moravec, Determination of the grain growth kinetics as a base parameter for numerical simulation demand. MM Science Journal, 2015. 2015: pp. 649-653.
    33.J. Humphreys, G.S. Rohrer, and A. Rollett, Chapter 11 - Grain Growth Following Recrystallization, in Recrystallization and Related Annealing Phenomena (Third Edition), J. Humphreys, G.S. Rohrer, and A. Rollett, Editors. 2017, Elsevier: Oxford. p. 375-429.
    34.M.M. Nowell and S.I. Wright, Orientation effects on indexing of electron backscatter diffraction patterns. Ultramicroscopy, 2005. 103: pp. 41-58.
    35.S.I. Wright and M.M. Nowell, EBSD Image Quality Mapping. Microscopy and Microanalysis, 2006. 12: pp. 72-84.
    36.M.A. Wells, I.V. Samarasekera, J.K. Brimacombe, E.B. Hawbolt, and D.J. Lloyd, Modeling the microstructural changes during hot tandem rolling of AA5XXX aluminum alloys: Part II. Textural evolution. Metallurgical and Materials Transactions B, 1998. 29: pp. 621-633.
    37.K.P. Rao, S.M. Doraivelu, and V. Gopinathan, Flow curves and deformation of materials at different temperatures and strain rates. Journal of Mechanical Working Technology, 1982. 6: pp. 63-88.
    38.J. Humphreys, G.S. Rohrer, and A. Rollett, Chapter 13 - Hot Deformation and Dynamic Restoration, in Recrystallization and Related Annealing Phenomena (Third Edition), J. Humphreys, G.S. Rohrer, and A. Rollett, Editors. 2017, Elsevier: Oxford. p. 469-508.
    39.H.J. McQueen and N.D. Ryan, Constitutive analysis in hot working. Materials Science and Engineering: A, 2002. 322: pp. 43-63.
    40.E.H. Chia and H.J. McQueen, Microstructural Control in Aluminum Alloys: Deformation, Recovery, and Recrystallization : Proceedings of a Symposium. Warrendale, PA: The Society. 1985. pp.179-96.
    41.I. Gutierrez, F. Castro, J. Urcola, and M. Fuentes, Static recrystallization kinetics of commercial purity aluminium after hot deformation within the steady state regime. Materials Science and Engineering: A, 1988. 102: pp. 77-84.
    42.N. Raghunathan, M.A. Zaidi, and T. Sheppard, Recrystallization kinetics of Al–Mg alloys AA 5056 and AA 5083 after hot deformation. Materials Science and Technology, 1986. 2: pp. 938-945.
    43.S.-R. CHEN and Y.-F. KAO, Microstructural Simulation of a 5052 Aluminum Alloy Strip for a Hot Tandem Mill. 2018. 31: pp. 52-89.
    44.A. Brahme, J. Fridy, H. Weiland, and A.D. Rollett, Modeling texture evolution during recrystallization in aluminum. Modelling and Simulation in Materials Science and Engineering, 2009. 17: pp. 015005.
    45.M.H. Alvi, S.W. Cheong, J.P. Suni, H. Weiland, and A.D. Rollett, Cube texture in hot-rolled aluminum alloy 1050 (AA1050)—nucleation and growth behavior. Acta Materialia, 2008. 56: pp. 3098-3108.
    46.H.E. Vatne, R. Shahani, and E. Nes, Deformation of cube-oriented grains and formation of recrystallized cube grains in a hot deformed commercial AlMgMn aluminium alloy. Acta Materialia, 1996. 44: pp. 4447-4462.

    無法下載圖示 校內:2028-07-30公開
    校外:2028-07-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE