簡易檢索 / 詳目顯示

研究生: 曾柏鈞
Tseng, Po-Chin
論文名稱: 利用環境噪訊探討2016美濃地震同震及震後的地震波波速變化
Coseismic and Postseismic Velocity Changes caused by the 2016 Mw 6.5 Meinong, Taiwan Earthquake using Ambient Seismic Noise
指導教授: 饒瑞鈞
Rau, Ruey-Juin
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 71
中文關鍵詞: 環境地震噪訊表面波層析成像法2016美濃地震
外文關鍵詞: Ambient seismic noise, Surface wave tomography, 2016 Meinong earthquake
相關次數: 點閱:203下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2016年2月6日3點57分26秒(當地時間GMT+8)發生高雄美濃地震,震央位在高雄市美濃區,深度為14.6 km,芮氏規模為6.6,最大震度7級位在台南新化、左鎮一帶,造成多處房屋倒塌及117人死亡,是繼921大地震後,傷亡最嚴重的地震。我們收集距離震央40 km以內的17個連續記錄的地震測站,採用每兩個測站的環境噪訊計算其交互相關函數(cross-correlation function, CCF),透過三年的資料疊加,建立兩站之間的經驗格林函數(empirical Green's function, EGF),應用在估算地震波波速的變化以及三維速度模型。
    我們計算17個測站共136對每日的CCF與參考相關函數(reference correlation function, REF)的時間延遲,在2014至2016三年內,從0.01 Hz至2 Hz共分析6個頻帶,得到相對地震波波速變化,再利用曲線擬合方程式,估算同震(co-seismic)速度變化量,發現在新化斷層以北以及距震央20 km西側分別有約0.463%及0.206%的速度下降量,在震後恢復(post-seismic recovery)上,前者波速並未恢復至震前(pre-seismic)速度,而後者在6個月內恢復至震前值。將兩站之間的EGF,採用環境噪訊層析成像法(ambient noise tomography),得到三維剪切波速度模型,結果顯示,在新化斷層以北,S波波速呈現相對高速,對應到古地壘構造(佳里古脊),而S波低速區分佈在高屏平原,對應到由西南外海延伸至陸地的泥貫入體(mud diapir)及泥火山(mud volcano)。
    從震後6個月的GPS位移場來看,在新化斷層以南,朝西南向位移約30 mm,但新化斷層以北卻無顯著的震後位移量,將GPS觀測量與波速變化、速度構造及震測剖面綜觀討論下,新化斷層鄰近台南盆地與泥質陸棚的邊界,新化以北的高速帶可對應到佳里古脊,南段的塊體則位在大陸斜坡上。我們認為由地震造成的強烈地表晃動,使得同震波速下降,是由於鬆軟的土質受到強烈晃動後,液壓增加,其岩體間的孔隙率及透水性上升、既有的裂隙被擴張,使得震波波速下降。新化以南較短時間的震後波速恢復,是由於南段塊體的推擠,使得應力上升與微小破裂的癒合,岩體透水性下降,達成震波波速回升。由此推論,新化斷層扮演著屏障的角色,阻擋美濃地震震後滑移向北的延伸。

    The 6 February 2016 Mw 6.5 Meinong earthquake with a focal depth of 14.6 km produced widespread strong shaking in the 30-km-away Tainan city and caused about 10 buildings collapsed and 117 death. We collected seismic waveforms from 17 broadband stations within 40 km epicentral distances and reconstruct the Green’s functions from cross-correlation function of ambient seismic noise between two stations. We analyzed seismic data for six different frequency ranges from 0.01 to 2 Hz, which yielded time series for different station pairs from January 2014 to December 2016. We found coseismic velocity drops of about 0.463% mostly in 0.5 to 1 Hz at the north of the Hsinhua fault and 0.206% at the south part, however postseismic velocity variation differs between these two regions. The time series of velocity change presented a non-recovery trend at the north area, however the south region is indicated by a recovering trend three months after the Meinong earthquake. For the surface wave tomography results in southwestern Taiwan, the regional geological structures are recognizable in the estimated phase-velocity dispersion maps. The 3D velocity model displays low velocity in the alluvial plain, but indicates high velocity in the north of the Hsinhua fault. During the six months of the postseismic period, based on the GPS observations in the Hsinhua fault area, the block south of the fault continuously moved ~30 mm along the southwest direction while the north of the fault remained stationary. The Hsinhua fault is located near the boundary between the Tainan basin and the muddy continental shelf, and where the block south of the fault is on the continental slope. We suggest that the coseismic velocity drop was caused by the earthquake shaking in the soft deposited materials with increase of permeability, corresponding to soil liquefaction. The shorter recovery time and thus velocity increase in the block south of the Hsinhua fault was resulted from the afterslip of the Meinong earthquake, which resulted in the stress increases and the closure of the micro-fracture. Apparently, the Hsinhua fault acts as a barrier blocked the afterslip south of the fault.

    摘要 I Extended Abstract III 誌謝 VI 目錄 VIII 圖目錄 X 表目錄 XII 一、緒論 1 1-1、論文架構 1 1-2、前言 2 1-3、文獻回顧及研究動機與目的 5 二、研究區域地質背景 7 三、資料與方法 11 3-1、資料選取與前處理 11 3-2、地震環境噪訊與交相關函數 16 3-3、交相關函數運算及參考波形函數 19 3-4、三維環境噪訊層析成像 22 3-5、相對速度變化量估算 28 3-6、速度變化時間序列擬合 32 4、研究成果 33 4-1、台灣西南部三維速度構造 33 4-2、速度變化時間序列 37 4-3、速度變化的空間分佈 42 5、成果討論 45 5-1、三維速度模型與地質構造 45 5-2、地震波速度季節變化與同震改變 46 5-3、地震波速度震後恢復 54 6、結論 61 參考文獻 63

    Aki, K. (1957), Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors, Bull Earthq. Res Inst Tokyo Univ, 35(3), 415–457.
    Barmin, M. P., M. H. Ritzwoller, and A. L. Levshin (2001), A Fast and Reliable Method for Surface Wave Tomography, in Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Surface Waves, pp. 1351–1375, Birkhäuser Basel.
    Bensen, G. D., M. H. Ritzwoller, M. P. Barmin, A. L. Levshin, F. Lin, M. P. Moschetti, N. M. Shapiro, and Y. Yang (2007), Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169(3), 1239–1260, doi:10.1111/j.1365-246X.2007.03374.x.
    Bensen, G. D., M. H. Ritzwoller, and N. M. Shapiro (2008), Broadband ambient noise surface wave tomography across the United States, J. Geophys. Res., 113(B5), doi:10.1029/2007JB005248.
    Brenguier, F., M. Campillo, C. Hadziioannou, N. M. Shapiro, R. M. Nadeau, and E. Larose (2008a), Postseismic Relaxation Along the San Andreas Fault at Parkfield from Continuous Seismological Observations, Science, 321(5895), 1478–1481, doi:10.1126/science.1160943.
    Brenguier, F., N. M. Shapiro, M. Campillo, V. Ferrazzini, Z. Duputel, O. Coutant, and A. Nercessian (2008b), Towards forecasting volcanic eruptions using seismic noise, Nat. Geosci., 1(2), 126–130, doi:10.1038/ngeo104.
    Campillo, M., and A. Paul (2003), Long-Range Correlations in the Diffuse Seismic Coda, Science, 299(5606), 547–549, doi:10.1126/science.1078551.
    Chaves, E. J., and S. Y. Schwartz (2016), Monitoring transient changes within overpressured regions of subduction zones using ambient seismic noise, Sci. Adv., 2(1), e1501289–e1501289, doi:10.1126/sciadv.1501289.
    Chen, C.-T., S.-C. Chang, and K.-L. Wen (2017), Stochastic ground motion simulation of the 2016 Meinong, Taiwan earthquake, Earth Planets Space, 69(1), doi:10.1186/s40623-017-0645-z.
    Chen, J. H., B. Froment, Q. Y. Liu, and M. Campillo (2010), Distribution of seismic wave speed changes associated with the 12 May 2008 Mw 7.9 Wenchuan earthquake: WAVE SPEED CHANGED BY THE WENCHUAN EARTHQUAKE, Geophys. Res. Lett., 37(18), L18302, doi:10.1029/2010GL044582.
    Claerbout, J. (1968), Synthesis of a layered medium from its acoustic transmission response, Geophysics, 33(2), 264–269, doi:10.1190/1.1439927.
    Clarke, D., L. Zaccarelli, N. M. Shapiro, and F. Brenguier (2011), Assessment of resolution and accuracy of the Moving Window Cross Spectral technique for monitoring crustal temporal variations using ambient seismic noise, Geophys. J. Int., 186(2), 867–882, doi:10.1111/j.1365-246X.2011.05074.x.
    Curtis, A., P. Gerstoft, H. Sato, R. Snieder, and K. Wapenaar (2006), Seismic interferometry—turning noise into signal, Lead. Edge, 25(9), 1082–1092, doi:10.1190/1.2349814.
    Han, D., A. Nur, and D. Morgan (1986), Effects of porosity and clay content on wave velocities in sandstones, Geophysics, 51(11), 2093–2107, doi:10.1190/1.1442062.
    Hobiger, M., U. Wegler, K. Shiomi, and H. Nakahara (2012), Coseismic and postseismic elastic wave velocity variations caused by the 2008 Iwate-Miyagi Nairiku earthquake, Japan: 2008, J. Geophys. Res. Solid Earth, 117(B9), doi:10.1029/2012JB009402.
    Hobiger, M., U. Wegler, K. Shiomi, and H. Nakahara (2016), Coseismic and post-seismic velocity changes detected by Passive Image Interferometry: comparison of one great and five strong earthquakes in Japan, Geophys. J. Int., 205(2), 1053–1073, doi:10.1093/gji/ggw066.
    Huang, H.-H., Y.-M. Wu, X. Song, C.-H. Chang, S.-J. Lee, T.-M. Chang, and H.-H. Hsieh (2014), Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny, Earth Planet. Sci. Lett., 392, 177–191, doi:10.1016/j.epsl.2014.02.026.
    Huang, M.-H., H. Tung, E. J. Fielding, H.-H. Huang, C. Liang, C. Huang, and J.-C. Hu (2016), Multiple fault slip triggered above the 2016 M w 6.4 MeiNong earthquake in Taiwan: Coseismic Slip Model of MeiNong Earthquake, Geophys. Res. Lett., 43(14), 7459–7467, doi:10.1002/2016GL069351.
    Huang, S.-T., K.-M. Yang, J.-H. Hung, J.-C. Wu, H.-H. Ting, W.-W. Mei, S.-H. Hsu, and M. Lee (2004), Deformation Front Development at the Northeast Margin of the Tainan Basin, Tainan-Kaohsiung Area, Taiwan, Mar. Geophys. Res., 25(1–2), 139–156, doi:10.1007/s11001-005-0739-z.
    Huang, T.-Y., Y. Gung, W.-T. Liang, L.-Y. Chiao, and L. S. Teng (2012), Broad-band Rayleigh wave tomography of Taiwan and its implications on gravity anomalies: RAYLEIGH WAVE TOMOGRAPHY OF TAIWAN, Geophys. Res. Lett., 39(5), L05305, doi:10.1029/2011GL050727.
    Huang, T.-Y., Y. Gung, B.-Y. Kuo, L.-Y. Chiao, and Y.-N. Chen (2015), Layered deformation in the Taiwan orogen, Science, 349(6249), 720–723, doi:10.1126/science.aab1879.
    Jian, P.-R., S.-H. Hung, L. Meng, and D. Sun (2017), Rupture characteristics of the 2016 Meinong earthquake revealed by the back projection and directivity analysis of teleseismic broadband waveforms, Geophys. Res. Lett., 44(8), 3545–3553, doi:10.1002/2017GL072552.
    Kanamori, H., L. Ye, B. S. Huang, H. H. Huang, S. J. Lee, W. T. Liang, Y. Y. Lin, K. F. Ma, Y. M. Wu, and T. Y. Yeh (2017), A strong-motion hot spot of the 2016 Meinong, Taiwan, earthquake (Mw=6.4), Terr Atmos Ocean, Accepted Manuscript, doi: 10.3319/TAO.2016.10.07.01.
    Krischer, L., T. Megies, R. Barsch, M. Beyreuther, T. Lecocq, C. Caudron, and J. Wassermann (2015), ObsPy: a bridge for seismology into the scientific Python ecosystem, Comput. Sci. Discov., 8(1), 014003, doi:10.1088/1749-4699/8/1/014003.
    Kuo-Chen, H., K.-X. Chen, W.-F. Sun, C.-W. Ho, Y.-H. Lee, Z.-K. Guan, C.-C. Kang, and W.-Y. Chang (2017), 3D Vs ambient noise tomography in the source region of the 2016 Mw6. 4 6 Meinong earthquake in Taiwan, Terr Atmos Ocean Sci, Accepted Manuscript, doi: 10.3319/TAO.2016.12.28.01.
    Larose, E. et al. (2015), Environmental seismology: What can we learn on earth surface processes with ambient noise?, J. Appl. Geophys., 116, 62–74, doi:10.1016/j.jappgeo.2015.02.001.
    Lawson, C. L., and R. J. Hanson (1974), Solving least squares problems, pp. 340, Englewood Cliffs N.J.: Prentice-Hall.
    Lecocq, T., C. Caudron, and F. Brenguier (2014), MSNoise, a Python Package for Monitoring Seismic Velocity Changes Using Ambient Seismic Noise, Seismol. Res. Lett., 85(3), 715–726, doi:10.1785/0220130073.
    Lee, C.-T., C.-T. Cheng, C.-W. Liao, and Y.-B. Tsai (2001), Site Classification of Taiwan Free-Field Strong-Motion Stations, Bull. Seismol. Soc. Am., 91(5), 1283–1297, doi:10.1785/0120000736.
    Lee, S., T. Yeh, and Y. Lin (2016), Anomalously Large Ground Motion in the 2016 ML 6.6 Meinong, Taiwan, Earthquake: A Synergy Effect of Source Rupture and Site Amplification, Seismol. Res. Lett., 87(6), 1319–1326, doi:10.1785/0220160082.
    Levshin, A. L., T. B. Yanovskaya, A. V. Lander, B. G. Bukchin, M. P. Barmin, L. I. Ratnikova, and E. N. Its (1989), Seismic surface waves in a laterally inhomogeneous Earth, Mod. Approaches Geophys., 9, 131–169.
    Li, Y.-G., J. E. Vidale, K. Aki, F. Xu, and T. Burdette (1998), Evidence of Shallow Fault Zone Strengthening After the 1992 M7.5 Landers, California, Earthquake, Science, 279(5348), 217–219, doi:10.1126/science.279.5348.217.
    Lin, A. T., A. B. Watts, and S. P. Hesselbo (2003), Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region, Basin Res., 15(4), 453–478, doi:10.1046/j.1365-2117.2003.00215.x.
    Mainsant, G., E. Larose, C. Brönnimann, D. Jongmans, C. Michoud, and M. Jaboyedoff (2012), Ambient seismic noise monitoring of a clay landslide: Toward failure prediction, J. Geophys. Res. Earth Surf., 117(F1), n/a-n/a, doi:10.1029/2011JF002159.
    Manga, M., I. Beresnev, E. E. Brodsky, J. E. Elkhoury, D. Elsworth, S. E. Ingebritsen, D. C. Mays, and C.-Y. Wang (2012), Changes in permeability caused by transient stresses: Field observations, experiments, and mechanisms, Rev. Geophys., 50(2), doi:10.1029/2011RG000382.
    McNamara, D. E., and R. P. Buland (2004), Ambient Noise Levels in the Continental United States, Bull. Seismol. Soc. Am., 94(4), 1517–1527, doi:10.1785/012003001.
    Paul, A., M. Campillo, L. Margerin, E. Larose, and A. Derode (2005), Empirical synthesis of time-asymmetrical Green functions from the correlation of coda waves, J. Geophys. Res. Solid Earth, 110(B8), B08302, doi:10.1029/2004JB003521.
    Peng, Z., and Y. Ben-Zion (2006), Temporal Changes of Shallow Seismic Velocity Around the Karadere-Düzce Branch of the North Anatolian Fault and Strong Ground Motion, Pure Appl. Geophys., 163(2–3), 567–600, doi:10.1007/s00024-005-0034-6.
    Sens-Schönfelder, C., and U. Wegler (2006), Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia, Geophys. Res. Lett., 33(21), doi:10.1029/2006GL027797.
    Shapiro, N. M., and M. Campillo (2004), Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophys. Res. Lett., 31(7), L07614, doi:10.1029/2004GL019491.
    Shapiro, N. M., M. Campillo, L. Stehly, and M. H. Ritzwoller (2005), High-Resolution Surface-Wave Tomography from Ambient Seismic Noise, Science, 307(5715), 1615–1618, doi:10.1126/science.1108339.
    Snieder, R. (2002), Coda Wave Interferometry for Estimating Nonlinear Behavior in Seismic Velocity, Science, 295(5563), 2253–2255, doi:10.1126/science.1070015.
    Stehly, L., M. Campillo, and N. M. Shapiro (2006), A study of the seismic noise from its long-range correlation properties, J. Geophys. Res., 111(B10), doi:10.1029/2005JB004237.
    Stehly, L., M. Campillo, B. Froment, and R. L. Weaver (2008), Reconstructing Green’s function by correlation of the coda of the correlation ( C 3 ) of ambient seismic noise, J. Geophys. Res., 113(B11), doi:10.1029/2008JB005693.
    Sweldens, W. (1996), The lifting scheme: A custom-design construction of biorthogonal wavelets, Appl. Comput. Harmon. Anal., 3(2), 186–200.
    Taira, T. ’aki, F. Brenguier, and Q. Kong (2015), Ambient noise-based monitoring of seismic velocity changes associated with the 2014 Mw 6.0 South Napa earthquake: Velocity Changes at Napa California, Geophys. Res. Lett., 42(17), 6997–7004, doi:10.1002/2015GL065308.
    Takagi, R., and T. Okada (2012), Temporal change in shear velocity and polarization anisotropy related to the 2011 M9.0 Tohoku-Oki earthquake examined using KiK-net vertical array data, Geophys. Res. Lett., 39(9), L09310, doi:10.1029/2012GL051342.
    Weaver, R., and O. Lobkis (2002), On the emergence of the Green’s function in the correlations of a diffuse field: pulse-echo using thermal phonons, Ultrasonics, 40(1), 435–439, doi:10.1016/S0041-624X(02)00156-7.
    Weaver, R. L., and O. I. Lobkis (2001), Ultrasonics without a Source: Thermal Fluctuation Correlations at MHz Frequencies, Phys. Rev. Lett., 87(13), doi:10.1103/PhysRevLett.87.134301.
    Wegler, U., H. Nakahara, C. Sens-Schönfelder, M. Korn, and K. Shiomi (2009), Sudden drop of seismic velocity after the 2004 Mw 6.6 mid-Niigata earthquake, Japan, observed with Passive Image Interferometry, J. Geophys. Res., 114(B6), doi:10.1029/2008JB005869.
    Yang, T. F., G.-H. Yeh, C.-C. Fu, C.-C. Wang, T.-F. Lan, H.-F. Lee, C.-H. Chen, V. Walia, and Q.-C. Sung (2004), Composition and exhalation flux of gases from mud volcanoes in Taiwan, Environ. Geol., 46(8), 1003–1011, doi:10.1007/s00254-004-1086-0.
    Yang, Y., M. H. Ritzwoller, A. L. Levshin, and N. M. Shapiro (2007), Ambient noise Rayleigh wave tomography across Europe, Geophys. J. Int., 168(1), 259–274, doi:10.1111/j.1365-246X.2006.03203.x.
    Yu, S., L. Kuo, R. S. Punongbayan, and E. G. Ramos (1999), GPS observation of crustal deformation in the Taiwan‐Luzon region, Geophys. Res. Lett., 26(7), 923–926.
    Yu, S.-B., H.-Y. Chen, and L.-C. Kuo (1997), Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274(1), 41–59.
    Yu, T.-C., and S.-H. Hung (2012), Temporal changes of seismic velocity associated with the 2006 Mw 6.1 Taitung earthquake in an arc-continent collision suture zone, Geophys. Res. Lett., 39(12), L12307, doi:10.1029/2012GL051970.
    Yukutake, Y., T. Ueno, and K. Miyaoka (2016), Determination of temporal changes in seismic velocity caused by volcanic activity in and around Hakone volcano, central Japan, using ambient seismic noise records, Prog. Earth Planet. Sci., 3(1), doi:10.1186/s40645-016-0106-5.
    Zhang, J., P. Gerstoft, and P. M. Shearer (2010), Resolving P-wave travel-time anomalies using seismic array observations of oceanic storms, Earth Planet. Sci. Lett., 292(3–4), 419–427, doi:10.1016/j.epsl.2010.02.014.
    Zhao, P., Z. Peng, Z. Shi, M. A. Lewis, and Y. Ben-Zion (2010), Variations of the velocity contrast and rupture properties of M6 earthquakes along the Parkfield section of the San Andreas fault, Geophys. J. Int., 180(2), 765–780, doi:10.1111/j.1365-246X.2009.04436.x.

    國家災害防救科技中心與國家地震工程研究中心 (2016),0206地震災情彙整與實地調查報告,共75頁。
    陳文山、李錫堤、石瑞銓、楊小青、楊志成、顏一勤、劉力豪、張徽正、侯進雄 (2004b),新化斷層的構造特性與古地震研究,經濟部中央地質調查所特刊第十五號,第111至119頁。
    陳文山、楊志成、楊小青、吳樂群、林啟文、張徽正、石瑞銓、林偉雄、李元希、石同生、盧詩丁 (2004d),從構造地形探討嘉南地區的活動斷層及構造分區,經濟部中央地質調查所彙刊第十七號,第53至77頁。
    陳文山、宋時驊、吳樂群、徐澔德、楊小青 (2005d),末次冰期以來台灣海岸平原區的海岸線變遷,考古人類學刊,共62頁,第40至55頁。
    陳松春 (2013),臺灣西南海域上部高屏斜坡泥貫入體及泥火山之分布及相關海床特徵,博士論文,共116頁,國立中央大學。
    黃旭燦 (2003),台灣中南部褶皺逆衝斷層帶地質構造特徵分析,博士論文,共130頁,國立中央大學。
    經濟部中央地質調查所 (2010),台灣活動斷層分布圖。
    經濟部中央地質調查所 (2016),20160206地震地質調查報告,共103頁。

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE