簡易檢索 / 詳目顯示

研究生: 施志勳
Shih, Chih-Hsun
論文名稱: 寬能隙半導體於太陽光電之應用
Application of Wide Bandgap Semiconductors in Solar Photovoltaics
指導教授: 洪茂峰
Houng, Mau-Phon
共同指導教授: 王納富
Wang, Na-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 79
中文關鍵詞: 矽奈米線太陽能電池溶膠凝膠法蕭特基二極體
外文關鍵詞: Silicon nanowires, solar cells, sol-gel methods, Schottky diode
相關次數: 點閱:67下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • AZOY太陽能電池,本研究以金屬輔助化學蝕刻方式製備矽奈米線(Si nanowires, SiNWs),並將AZOY材料沉積於矽奈米線之上,透過矽奈米線的抗反射功效,提升材料對太陽光能的吸收。實驗結果顯示,沉積AZOY材料之奈米線矽基板於可見光波段(300nm-800nm)之反射率,相較於沉積於裸矽下降了0-30%,轉換效率也由4.52%提升至4.91%。
    Ga2O3蕭特基二極體,本研究以溶膠凝膠法(sol-gel)方式製備氧化鎵材料,並以鋁作為金屬電極。實驗結果顯示,二極體導通電壓為1.18V、導通電阻2.37Ω、開關比28740。逆向偏壓之電流,於-180V、-120V、-60V、0V之電流分別為-2.374mA、-0.368mA、-0.136mA、0.00042mA。

    In this study, n-type aluminum- and yttrium-codoped zinc oxide (AZOY) and
    gallium oxide (Ga2O3) wide band-gap semiconductors were used in AZOY solar cell and Ga2O3 Schottky diode, respectively. AZOY solar cell, in this study, silicon nanowires (SiNWs) were prepared by metalassisted chemical etching, and AZOY material was deposited on the silicon nanowires. The experimental results show that the reflectivity of the nanowire silicon substrate deposited with AZOY material in the visible light band (300nm-800nm) is reduced by 0-30% compared to that deposited on bare silicon, and the conversion efficiency is also increased from 4.52% to 4.91%. Ga2O3 Schottky diode, in this study, the gallium oxide material was prepared by the sol-gel method, and aluminum was used as the metal electrode. The experimental results show that the diode's on-voltage is 1.18V, the on-resistance is 2.37Ω, and the switching ratio is 28740. The reverse bias current is -2.374mA, -0.368mA, -0.136mA, and 0.00042mA at -180V, -120V, -60V, and 0V, respectively.

    摘要 I Abstract II 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1前言 1 1-2太陽能電池 3 1-2-1太陽能電池簡介 3 1-2-2 太陽能應用 6 1-2-3 氧化鋅(Zinc Oxide , ZnO)薄膜材料簡介 7 1-2-4 氧化鋅應用 8 1-2-5 矽奈米線簡介 9 1-3蕭特基二極體 (Schottky Diode) 10 1-3-1氧化鎵(Gallium Oxide , Ga2O3)材料簡介 10 1-3-2氧化鎵應用 11 1-4 研究動機 12 第二章 理論基礎與文獻探討 16 2-1透明導電薄膜(Transparent conductive oxide, TCO) 16 2-1-1 金屬薄膜 16 2-1-2金屬氧化物薄膜 16 2-2比爾-朗伯定律(Beer Lambert law)17 2-3矽奈米線製程原理 18 2-4薄膜沉積理論 20 2-4-1沉積過程 20 2-4-2 濺鍍薄膜截面結構 21 2-5太陽能電池理論 22 2-5-1光伏效應 22 2-5-2單晶矽太陽能電池結構 23 2-5-3單晶矽太陽能電池運作原理 24 2-5-4太陽能電池電壓─電流特性 25 2-6溶膠凝膠法 27 2-7金屬─半導體接觸理論 29 2-7-1蕭特基接觸 (Schottky contact) 30 2-7-2 歐姆接觸 (Ohmic contact) 32 第三章 實驗方法與儀器介紹 34 3-1實驗流程 34 3-2矽奈米線 AZOY薄膜太陽能電池 35 3-2-1矽基板之清洗步驟 35 3-2-2矽奈米線之製備 36 3-2-3 AZOY薄膜沉積 37 3-2-4 金屬電極沉積 37 3-3 Ga2O3蕭特基二極體 38 3-3-1矽基板之清洗步驟 38 3-3-2溶膠凝膠法─溶液配置 38 3-3-3溶膠凝膠法─薄膜成長 38 3-3-4 金屬電極沉積 39 3-4實驗藥品介紹 39 3-5實驗藥品介紹 41 3-5-1烤箱(baking oven) 41 3-5-2旋轉塗佈機(Spin Coater) 42 3-5-3電磁加熱攪拌器(hot plate/magnetic stirrer) 43 3-5-4 磁控射頻濺鍍機(RF magnetron sputtering) 44 3-5-5熱蒸鍍機(RF magnetron sputtering) 45 3-5-6紫外光─可見光光譜儀(ultraviolet visible spectrometer, UV-VIS ) 46 3-5-7太陽光模擬器(solar simulator)、多功能電源電表(SourceMeter) 47 3-5-8 場發射掃描電子顯微鏡(FE-SEM) 48 3-5-9能量色散 X射線光譜儀(energy dispersive X-ray spectrometer, EDS) 49 第四章 結果與討論 50 4-1實驗架構 50 4-2矽奈米線太陽能電池 51 4-2-1結構改良 51 4-2-2 AZOY薄膜製備 53 4-2-3矽奈米線參數調變 55 4-2-4 AZOY沉積於矽奈米線上 57 4-2-5矽奈米線太陽能電池電性分析 60 4-3氧化鎵蕭特基二極體 62 4-3-1 Ga2O3薄膜製備 62 4-3-2 Ga2O3蕭特基二極體製備與電性量測 65 4-3-3 Ga2O3蕭特基二極體崩潰電壓量測 68 第五章 結論 70 第六章 未來展望 72 參考文獻 74

    [1] 行政院-重要政策(2018)
    https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/f0c0d485-a977-40cc-aeab-5e19e210fd85
    [2] Solar Cell Efficiency Records
    https://www.pveducation.org/es/pvcdrom/appendices/solar-cell-efficiency-results2
    [3] F. Dimroth et al., “METAMORPHIC GaInP/GaInAs/Ge TRIPLE-JUNCTION SOLAR CELLS WITH > 41 % EFFICIENCY”, 34th IEEE Photovoltaic Specialists Conference. 2009.
    [4] T. Takamoto et al., “World’s Highest Efficiency Triple-junction Solar Cells Fabricated by Inverted Layers Transfer Process”, 35 IEEE Photovoltaic Specialist Conference. Honolulu HI, USA, 2010.
    [5] M. A. Green, “The path to 25% silicon solar cell efficiency: History of silicon cell evolution”, Progress in Photovoltaics: Research and Applications, vol. 17, pp. 183-189, 2009.
    [6] M. J. O’Neil and McDanal, A. J., “Outdoor measurement of 28% efficiency for a mini-concentrator module”, National Center for Photovoltaics Program Review Meeting. Denver, USA, 2000.
    [7] J. Zhao et al., “20,000 PERL silicon cells for the "1996 World Solar Challenge" solar car race”, Progress in Photovoltaics: Research and Applications, vol. 5, pp. 269–276, 1997.
    [8] P. J. Cousins et al., “Gen III: Improved Performance at Lower Cost”, in 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, 2010.
    [9] M. A. Green, Emery, K., Hishikawa, Y., and Warta, W., “Solar cell efficiency tables (version 35)”, Progress in Photovoltaics: Research and Applications, vol. 18, pp. 144–150, 2010.
    [10] Sadhu, M., Chakraborty, S., Das, N., & Sadhu, P.K. (2015). Role of Solar Power in Sustainable Development of India. Indonesian Journal of Electrical Engineering and Computer Science, 14, 34-41.
    [11] Ahmed, Mohamed Elmahi Mohamed and Abd Ellateef Abbass Supervisor. “Structural and Optical Properties of ZnO Nano-Powder Synthesized by Combustion and Sol-gel Method.” (2018).
    [12] Vaseem, M., Umar, A., & Hahn, Y. B. (2010). ZnO nanoparticles: growth, properties, and applications. Metal oxide nanostructures and their applications, 5, 1-36.
    [13] Nassiopoulou, A.G.; Gianneta, V.; Katsogridakis, C. Si nanowires by a single-step metal-assisted chemical etching process on lithographically defined areas: Formation kinetics. Nanoscale Res. Lett. 2011, 6, 1–8.
    [14] 閎康科技「科技新航道 | 合作專欄」陽明交通大學電子研究所洪瑞華特聘教授「第四代半導體 Ga2O3 技術原理、優勢與產業前景」(2021)
    [15] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Development of gallium oxide power devices,” Phys. Status Solidi A 211, 21–26 (2014).
    [16] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakosh. “Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates”, Appl. Phys. Lett, 100, 013504 (2012)
    [17] A. Kuramata, K. Koshia, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshia, “Bulk Crystal Growth of Ga2O3”, Proc. SPIE 10533, Oxide-based Materials and Devices IX, 105330E (2018).
    [18] S. J. Pearton, F. Ren, M. Tadjer, and J. Kim. “Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS”, J. Appl. Phys. 124, 220901 (2018).
    [19] A. Afzal,“β-Ga2O3 nanowires and thin films for metal oxide semiconductor gas sensors: Sensing mechanisms and performance enhancement strategies”, J. Materiomics, 5, 542 (2019).
    [20] Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T, Yamakoshi S (2016) Recent progress in Ga2O3 power devices. Semicond Sci Technol 31(3):034001
    [21] 台灣電力公司-永續發展專區
    https://csr.taipower.com.tw/esg/sustainable/new-sources-of-energy
    [22] Bouguer, Pierre (1729). Essai d'optique sur la gradation de la lumière [Optics essay on the attenuation of light] (in French). Paris, France: Claude Jombert. pp. 16–22.
    [23] Lambert, J.H. (1760). Photometria sive de mensura et gradibus luminis, colorum et umbrae [Photometry, or, On the measure and gradations of light intensity, colors, and shade] (in Latin). Augsburg, (Germany): Eberhardt Klett.
    [24] Beer (1852). "Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten" [Determination of the absorption of red light in colored liquids]. Annalen der Physik und Chemie (in German).
    [25] Ingle, J. D. J.; Crouch, S. R. (1988). Spectrochemical Analysis. New Jersey: Prentice Hall.
    [26] Mayerhöfer, Thomas G.; Pahlow, Susanne; Popp, Jürgen (2020). "The Bouguer-Beer-Lambert Law: Shining Light on the Obscure". ChemPhysChem. 21: 2031. doi:10.1002/cphc.202000464.
    [27] IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Beer–Lambert law". doi:10.1351/goldbook.B00626
    [28] Fox, Mark (2010). Optical Properties of Solids (2 ed.). Oxford University Press. p. 3. ISBN 978-0199573370.
    [29] Attard, Gary; Barnes, Colin (1998). Surfaces. Oxford Chemistry Primers. p. 26. ISBN 978-0198556862.
    [30] Liu, Y., Ji, G., Wang, J. et al. Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration. Nanoscale Res Lett 7, 663 (2012).
    [31] Mcsweeney, William & Geaney, Hugh & O'Dwyer, Colm. (2015). Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Research. 8. 1395-1442. 10.1007/s12274-014-0659-9.
    [32] Mcsweeney, William & Glynn, Colm & Geaney, Hugh & Collins, Gillian & Holmes, Justin & O'Dwyer, Colm. (2016). Mesoporosity in doped silicon nanowires from metal assisted chemical etching monitored by phonon scattering. Semiconductor Science and Technology. 31. 014003. 10.1088/0268-1242/31/1/014003.
    [33] 莊達人,“VLSI製造技術”,高立圖書股份有限公司(1995)
    [34] Thornton JA. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology. 1974;11:666–670. DOI: 10.1116/1.1312732
    [35] Łuszczek, Maciej, Grzegorz Łuszczek, and Dariusz Świsulski. "Simulation investigation of perovskite-based solar cells." Przegląd Elektrotechniczny (2021): 99-102
    [36] Tao, Yuguo & Rohatgi, Ashish. (2017). High‐Efficiency Front Junction n‐ Type Crystalline Silicon Solar Cells. 10.5772/65023.
    [37] Macdonald D, Geerligs LJ. Recombination activity of interstitial iron and other transition metal point defects in p‐and n‐type crystalline silicon. Applied Physics Letters 2004; 85(18):4061–4063.
    [38] Glunz SW, Rein S, Lee JY, Warta W. Minority carrier lifetime degradation in boron‐ doped Czochralski silicon. Journal of Applied Physics. 2001; 90(5):2397–2404.
    [39] El-Ahmar, Mohamed & Ahmed, Abou-Hashema & Hemeida, Ashraf. (2016). Mathematical modeling of Photovoltaic module and evalute the effect of varoius paramenters on its performance. 741-746. 10.1109/MEPCON.2016.7836976.
    [40] G.C. Righini, A. Chiappini, "Glass optical waveguides: a review of fabrication techniques", Optical Engineering 53 (2014) pp. 071819-1/14 (Mar 14, 2014), ISSN: 1560-2303, doi: 10.1117/1.OE.53.7.071819.
    [41] Zi-Neng Ng, Kah-Yoong Chan, Thanaporn Tohsophon, Effects of annealing temperature on ZnO and AZO films prepared by sol–gel technique, Applied Surface Science, Volume 258, Issue 24, 2012, Pages 9604-9609,ISSN 0169-4332, https://doi.org/10.1016/j.apsusc.2012.05.156.
    [42] Ben Streetman, Sanjay Banerjee, Solid state electronic devices(7/e), Person FT Press, pp. 252~256, 2016.
    [43] F. -Y. Zhu, Q. -Q. Wang, X. -S. Zhang, W. Hu, X. Zhao and H. -X. Zhang, “3D nanostructure reconstruction based on the SEM imaging principle, and applications”, Nanotechnology 25, 185705(2014)
    [44] Young R A and Kalin R V 1986 Microelectronics processing: inorganic materials characterization (ACS Symp. Series)(Plymouth, USA)
    [45] M. Uo, T. Wada, and T. Sugiyama, “Applications of X-ray fluorescence analysis (XRF) to dental and medical specimens”, Jpn Dent Sci Rev 51, 2-9(2015)
    [46] M. A. Green and Keevers, M. J., “Optical properties of intrinsic silicon at 300 K”, Progress in Photovoltaics: Research and Applications, vol. 3, pp. 189 - 192, 1995.
    [47] M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients”, Solar Energy Materials and Solar Cells, vol. 92, pp. 1305–1310, 2008.
    [48] Optical Properties of Silicon
    https://www.pveducation.org/pvcdrom/materials/optical-properties-of-silicon

    下載圖示 校內:2024-07-25公開
    校外:2024-07-25公開
    QR CODE