| 研究生: |
廖佳麒 Liao, Chia-Chi |
|---|---|
| 論文名稱: |
寬頻光干涉應用於近場光學與光學同調斷層掃描之研究 Research on Using Interference with Broad-bandwidth Light in Near-field Optics and Mueller Optical Coherence Tomography |
| 指導教授: |
羅裕龍
Lo, Yu-Lung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 無孔徑式掃描近場光學顯微鏡 、訊號調變 、光學同調斷層掃描 、異向光學材料 、謬勒矩陣 、基因演算法 |
| 外文關鍵詞: | Apertureless scanning near-field optical microscopy, Modulation signal analysis, Optical coherence tomography, Anisotropic optical materials, Mueller matrix, Genetic algorithm |
| 相關次數: | 點閱:154 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文應用寬頻光低同調干涉特性,使其在無孔徑式掃描光學近場顯微技術系統中濾除大範圍的背景雜訊,並結合所發展出光學信號分析模型以推導出各種不同方法來改良信號。研究也將寬頻光干涉技術應用至光學同調斷層掃描技術進行延伸量測材料的多重光學異向參數。
無孔徑式近場光學顯微技術主要應用於奈米尺度之材料性質檢測,其解析度可達10奈米,是具有超高解析度檢測材料之新興技術。而對於無孔徑式掃描近場光學顯微鏡而言,如何消除背景散射光是改良系統效能的重要方向;在傳統的無孔徑式近場光學顯微技術多使用自調變或外差調變等調變技術來減弱背景干擾,本研究先提出一唯象模型來分析顯微鏡中包含近場交互作用效應與背景信號所產生的總信號。模型驗證可符合使用聲光調變器進行外差調變量測之實驗所獲得的壓克力材料(Polymethylmethacrylate, PMMA)響應頻譜,因此我們可根據此模型來判定系統中的實驗參數,進而減小背景信號的影響,以確認實驗可量得真實的近場信號。以此唯象模型為基礎,分析模型可驗證系統引入寬頻光干涉技術,利用其低同調干涉條件濾除背景雜訊,以獲得無背景雜訊之近場信號;或另一系統使用擬外差干涉技術達成無背景雜訊之近場量測。然而此兩種技術都需要昂貴儀器與繁複嚴格校正技術,因此本研究再以唯象模型為基礎,引入基因演算法,發展不需使用複雜且昂貴的系統便可精確地定義奈米材料性質,分析其材料結構、殘留應力、應變量等特性之方法。本研究可改良信號並拓展整套無孔徑近場光學顯微技術的應用面,研究成果將是探討奈米尺度下量測分析材料的一項利器,提供最新奈米級量測能力,並大幅改善量測之準確性,是支援生醫及光電材料研究強而有力之檢測技術。
本論文並延伸白光干涉技術於雙折射材料之檢測,研究發展出一套偏極化光學同調斷層掃描儀,利用其高解析度與色散補償獲得更多資訊,比較演算來量得線性雙折射材料各反射層的厚度、折射率、主軸方位角、相位延遲量、以及尋常光與非尋常光折射率。本研究再以此架構為基礎,將系統延伸至謬勒光學同調斷層掃描儀。此謬勒光學同調斷層掃描儀可量得待測物的謬勒矩陣,因此本研究將根據謬勒矩陣之分析,結合謬勒矩陣微分演算與謬勒矩陣分解法,提出一合成模型來解析混合材料之線性雙折射/雙衰減、旋性雙折射/雙衰減與去偏極效應。此模型相較於既存的謬勒矩陣微分演算可拓展參數量測範圍至全域量測;而相較於謬勒矩陣分解法,此模型可解決元素矩陣相乘時需特定排列條件之限制。實驗則使用偏光儀與合成模型成功解析甲殼素、葡萄糖與微米粒子之混合物中旋性雙折射/線性雙折射/去偏極效應;以及兩種磁流材料分別具有的旋性雙折射/旋性雙衰減/去偏極效應,或線性雙折射/線性雙衰減/去偏極效應之特性。實驗亦驗證合成模型對於擁有多重異向特性之真實待測物能提供較穩定的量測結果。而此理論應用於光學同調斷層掃描儀中,更可獲得待測物的深度截面資訊,更提供生物科技或工業技術上相對應之光學異向材料理想之檢測技術。
Using the low coherence of the broad-bandwidth light to improve and extend the existing optical measurement technique is discussed in this dissertation. An improvement in the signal of the apertureless scanning near-field optical microscopy (a-SNOM) by using the broad-bandwidth light is derived by the proposed phenomenological model. Also, a measurement in the materials containing multiple optically anisotropic properties by using optical coherence tomography (OCT) based on the low coherence interfreometry with broad-bandwidth light is introduced in this study.
A-SNOM enables the surface properties of optically scattering materials to be measured with an ultra-high resolution. However, the detection signal is inevitably contaminated by the background noise. This noise must be eliminated if the properties of the measured sample are to be reliably determined. Modulation methods such as homodyne and heterodyne detections are employed in a-SNOM in order to eliminate serious background noises from scattering fields. Usually, the frequency-modulated detection signal in a-SNOM is generally analyzed using a simple dipole-interaction model based only on the near-field interaction. However, the simulated a-SNOM spectra obtained using such models are in poor agreement with the experimental results since the effects of background noise are ignored. Accordingly, this study proposes a new phenomenological model for analyzing the a-SNOM detection signal in which the effects of both the dipole-interaction field and the background noise are taken into account. It is shown that the simulated a-SNOM spectrum for polymethylmethacrylate (PMMA) sample in the standard acousto-optic modulator (AOM) based heterodyne detection configuration is in good agreement with the experimental results. Additionally, the literature contains various configurations capable of directly obtaining a background-free detection signal of a-SNOM (the a-SNOM configuration with the broad-bandwidth light source and a pseudo-heterodyne a-SNOM configuration), but these methods generally requires the use of a complex experimental setup and the strict calibration. Accordingly, the present study provides the robust phenomenological model with a genetic algorithm for inversely extracting material properties without using a background-free signal from a complex experimental setup. Finally, the properties of SiC crystal in different structures are successfully and inversely extracted by only using the first and second orders of modulation signals as multiple objective functions in cure-fitting genetic algorithm.
A new polarization-sensitive optical coherence tomography (PS-OCT) system is proposed for obtaining simultaneous measurements of the thickness, mean group refractive index, apparent phase retardation, and optical axis orientation of a linear birefringent material. This study extends the proposed OCT system to a Mueller OCT to extract linear birefringence (LB), linear dichroism (LD) parameters properties in the optically anisotropic material. The full 4×4 Mueller matrix of the sample is able to be measured by the Mueller OCT. Hence, based on the analysis of the Mueller matrix, a hybrid model comprising the differential Mueller matrix formalism and the Mueller matrix decomposition method is proposed for extracting the linear birefringence (LB), linear dichroism (LD), circular birefringence (CB), circular dichroism (CD), and depolarization properties (Dep) of turbid optical samples. In contrast to the differential-based Mueller matrix method, the proposed hybrid model provides full-range measurements of all the anisotropic properties of the optical sample. Furthermore, compared to the decomposition-based Mueller matrix method, the proposed model is insensitive to the multiplication order of the constituent basis matrices. The validity of the proposed method is confirmed by extracting the anisotropic properties of a compound chitosan-glucose-microsphere sample with LB/CB/Dep properties and two ferrofluidic samples with CB/CD/Dep and LB/LD/Dep properties by Stokes polarimetry, respectively. The results presented in this study confirm that the proposed model has significant potential for extracting the optical parameters of real-world samples characterized by either single or multiple anisotropic properties. As such, inclusive of the ability to get in-depth cross-sectional images of the sample by OCT, the proposed Mueller OCT combining the hybrid model provides an ideal solution for biological and industrial application in which a precise knowledge of the optical properties of an anisotropic material is required.
[1] D. W. Pohl, S. Denk, and M. Lanz, "Optical stethoscopy: image recording with resolution λ/20," J. Appl. Phys., Vol. 44, pp. 651-653, 1984.
[2] S. Kirstein, "Scanning near-field optical microscopy," Curr. Opin. Biotechnol., Vol. 4, pp. 256-264, 1999.
[3] J. D. Jackson, Classical electrodynamics, Wiley, 1999.
[4] S. Patane, G. G. Gucciardi, M. Labardi, and M. Allegrini, "Apertureless near-field optical microscopy," Rivita Del Nuovo Cimento, Vol. 27, pp.1-46, 2004.
[5] B. Knoll, and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature, Vol.. 399, pp. 134-137, 1999.
[6] J. Wessel, "Surface-enhanced optical microscopy," J. Opt. Soc. Am., Vol. 2, pp. 1538-1540, 1985.
[7] H. K. Wickramasinghe and C. C. Williams, "Apertureless near field optical microscope," US Patent 4 947 034, 1990.
[8] Y. Inouye, and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett., Vol. 19, pp. 159-161, 1994.
[9] R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale, " Phys. Rev. Lett., Vol. 85, pp. 3029-3032, 2000.
[10] R. Hillenbrand, B. Knoll, and F. Keilmann, "Pure optical contrast in scattering-type scanning near-field microscopy," J. Microsc., Vol. 202, pp. 77-83, 2000.
[11] B. Knoll, and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun., Vol. 182, pp. 321-328, 2000.
[12] S. Hudlet, S. Aubert, A. Bruyant, R. Bachelot, P. M. Adam, J. L. Bijeon, G. Lerondel, P. Royer, and A. A. Stashkevich, "Apertureless near field optical microscopy: a contribution to the understanding of the signal detected in the presence of background field," Opt. Commun., Vol. 230, pp. 245-251, 2004.
[13] F. Formanek, Y. D. Wilde, and L. Aigouy, "Analysis of the measured signals in apertureless near-field optical microscopy," Ultramicrosc., Vol. 103, pp. 133-139, 2005.
[14] P. G. Gucciardi, G. Bachelier, and M. Allegrini, "Far-field background suppression in tip-modulated apertureless near-field optical microscopy," J. Appl. Phys., Vol. 99, Art. No. 124309, 2006.
[15] I. Stefanon, S. Blaize, A. Bruyant, S Aubert, G. Lerondel, R. Bachelot, and P. Royer, "Heterodyne detection of guided waves using a scattering-type scanning near-field optical microscope," Opt. Express, Vol. 13, pp. 5553-5564, 2005.
[16] C. H. Chuang, and Y. L. Lo, "Analytical analysis of modulated signal in apertureless scanning near-field optical microscopy," Opt. Express, Vol. 15, pp. 15782-15796, 2007.
[17] C. H. Chuang, and Y. L. Lo, "An analysis of heterodyne signals in apertureless scanning near-field optical microscopy," Opt. Express, Vol. 16, pp. 17982–18003, 2008.
[18] S. Amarie, T. Ganz, and F. Keilmann, "Mid-infrared near-field spectroscopy," Opt. Express, Vol. 17, pp. 21794-21801, 2009.
[19] N. Ocelic, A. Huber, and R. Hillenbrand, "Pseudoheterodyne detection for background-free near-field spectroscopy," Appl. Phys. Lett., Vol. 89, 101124, 2006.
[20] A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express, Vol. 15, pp. 8550-8565, 2007.
[21] A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, "Infrared nanoscopy of strained semiconductors," Nature Nanotechnology, Vol. 4, pp. 153-157, 2008.
[22] H. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Sinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science, Vol. 254, pp. 1178-1181, 1991.
[23] A.F. Fercher, C.K. Hitzenberger, M. E. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, "A thermal light source technique for optical coherence tomography," Opt. Commun., Vol. 185, pp. 57-64, 2000.
[24] J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett., Vol. 19, pp. 590-592, 1994.
[25] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys., Vol. 66, pp. 239-303, 2003.
[26] E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, "Full-field optical coherence microscopy," Opt. Lett., Vol. 23, pp. 244-246, 1998.
[27] M. R. Hee, D. Huang, E. A. Swanson, and J.G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B, Vol. 9, pp. 903-908, 1992.
[28] J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett., Vol. 22, pp. 934-936, 1997.
[29] C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Opt. Express, Vol. 9, pp. 780-790, 2001.
[30] J. Moreau, V. Loriette, and A. Boccara, "Full-field birefringence imaging by thermal light polarization-sensitive optical coherence tomography. I. Theory," Appl. Opt., Vol. 42, pp. 3800-3810, 2003.
[31] Y. L. Lo, C. I. Kuo, C. H. Chuang, and Z. Z. Yan, "Optical coherence tomography system with no high-precision scanning stage and stage controller," Appl. Opt., Vol. 43, pp. 4142-4149, 2004.
[32] Y. L. Lo, C. C. Yen, and S. J. Chen, "Fiber type of optical coherence tomography with an auto-focus device," Opt. Comm., Vol. 259, pp. 70-77, 2005.
[33] C. C. Liao, Y. L. Lo and C. Y. Yeh, "Measurements in multiple optical parameters of the birefrigent sample using polarization-sensitive optical coherence tomograghy," J. Lightwave Technol., Vol. 27, pp. 483-493, 2009.
[34] G. Yao and L. V. Wang, "Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography," Opt. Lett., Vol. 24, pp. 537-539, 1999.
[35] S. Jiao, G. Yao, and L. V. Wang, "Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography," Appl. Opt., Vol. 39, pp. 6318-6324, 2000.
[36] P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, S. L. Jacques, "In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy," J. Biomed. Opt., Vol. 10, 034018-1-034018-15, 2005.
[37] T. Moffitt, Y. C. Chen, S. A. Prahl, "Preparation and characterization of polyurethane optical phantoms," J. Biomed. Opt., Vol. 11, 041103-1 - 041103-10, 2006.
[38] J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, "Double-Integrating-Sphere System for Measuring the Optical Properties of Tissue," Appl. Opt., Vol. 32, pp. 399-410, 1993.
[39] A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, "Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress," Appl. Opt., Vol. 36, pp. 402-415, 1997.
[40] S. J. Matcher, M. Cope, and D. T. Delpy, "In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Appl. Opt., Vol. 36, pp. 386-396, 1997.
[41] G. Pal, S. Basu, K. Mitra, and T. Vo-Dinh, "Time-resolved optical tomography using short-pulse laser for tumor detection," Appl. Opt., Vol. 45, pp. 6270–6282, 2006.
[42] D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, "Multi-channel time-resolved system for functional near infrared spectroscopy," Opt. Exp., Vol. 14, pp. 5418-5432, 2006.
[43] S. Fantini, M.-A. Franceschini, J.S. Maier, S.A. Walker, B.B. Barbieri, and E. Gratton, "Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry," Opt. Engi., Vol. 34, pp. 32-42, 1995.
[44] G. Alexandrakis, D. R. Busch, G. W. Faris, and M. S. Patterson, "Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model, " Appl. Opt.m Vol. 40, pp. 3810-3821, 2001.
[45] N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, "Spatial variations in optical and physiological properties of healthy breast tissue," J. Biomed. Opt., Vol. 9, pp. 534-540, 2004.
[46] S. Yeh, O. S. Khalil, C. F. Hanna, and S. Kantor, "Near-infrared thermo-optical response of the localized reflectance of intact diabetic and nondiabetic human skin," J. Biomed. Opt., Vol. 8, pp. 534-544, 2003.
[47] A. Dimofte, J. Finlay, and T. Zhu, "A method for determination of the absorption and scattering properties interstitially in turbid media," Phys. Med. Biol., Vol. 50, pp. 2291-2311, 2005.
[48] R. O. Esenaliev, Y. Y. Petrov, O. Hartrumpf, D. J. Deyo, and D. S. Prough, "Continuous noninvasive monitoring of total hemoglobin concentration by an optoacoustic technique," Appl. Opt., Vol. 43, pp. 3401-3407, 2004.
[49] C. L. Darling, G. D. Huynh, and D. Fried, "Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm," J. Biomed. Opt., Vol. 11, 034023, 2006.
[50] B. D. Cameron, M.J. Rakovic, M. Mehrübeoglu, G.W. Kattawar, S. Rastegar, L.V. Wang, and G.L. Coté, "Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium," Opt. Lett., Vol. 23, pp. 485-487, 1998.
[51] G. L. Liu, Y. Li, and B.D. Cameron, "Polarization-based optical imaging and processing techniques with application to the cancer diagnostics," Proc. SPIE, Vol. 4617, pp. 208-220, 2002.
[52] B. D. Cameron, Y. Li, and A. Nezhuvingal, "Determination of optical scattering properties in turbid media using Mueller matrix imaging," J. Biomed. Opt., Vol. 11, 054031-1 - 054031-8, 2006.
[53] X. Wang, G. Yao, and L.V. Wang, "Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose," Appl. Opt., Vol. 41, pp. 792-801, 2002.
[54] X. Wang and L.V. Wang, "Propagation of polarized light in birefringent turbid media: A Monte Carlo study," J. Biomed. Opt., Vol. 7, pp. 279-290, 2002.
[55] N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, "Mueller matrix decomposition for polarized light assessment of biological tissues, " J. Biopho., Vol. 2, pp. 145-156, 2009.
[56] N. Ghosh, M. F. G. Wood, and I. A. Vitkin, "Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry, " J. Appl. Phys., Vol. 105, 102023-1-102023-8, 2009.
[57] X. Guo, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, "Depolarization of light in turbid media: a scattering event resolved Monte Carlo study," Appl. Opt., Vol. 49, pp. 153-162, 2010.
[58] N. Ghosh and I.A. Vitkin, "Tissue polarimetry: concepts, challenges, applications, and outlook," J. Biomed. Opt., Vol. 16, 110801-1 - 110801-29, 2011.
[59] T. T. H. Pham and Y. L. Lo, "Extraction of effective parameters of turbid media utilizing Mueller matrix approach -A study of glucose sensing," J. Biomed. Opt., Vol. 17, pp. 097002, 2012.
[60] R. M. A. Azzam, "Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4 × 4 matrix calculus," J. Opt. Soc. Am., Vol. 68, pp. 1756-1767, 1978.
[61] R. Ossikovski, "Differential matrix formalism for depolarizing anisotropic media," Opt. Lett., Vol. 36, pp. 2330-2332, 2011.
[62] N. Ortega-Quijano and J. L. Arce-Diego, "Depolarizing differential Mueller matrices," Opt. Lett., Vol. 36, pp. 2429-2431, 2011.
[63] N. Ortega-Quijano and J. L. Arce-Diego, "Mueller matrix differential decomposition for direction reversal: application to samples measured in reflection and backscattering," Opt. Exp., Vol. 19, pp. 14348-14353, 2011.
[64] J. Aizpurua, T. Taubner, F. J. García de Abajo, M. Brehm, and R. Hillenbrand, "Substrate-enhanced infrared near-field spectroscopy," Opt. Express, Vol. 16, pp. 1529-1545, 2008.
[65] S. Amarie and F. Keilmann, "Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy," Phys. Rev. B, Vol. 83, 045404, 2011.
[66] A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, "Infrared nanoscopy of strained semiconductors," Nature Nanotechnology, Vol. 4, pp. 153-157, 2008.
[67] E. Betzig and R. J. Chinchester, "Single molecules observed by near-field scanning optical microscopy," Science, Vol. 262, pp.1422, 1993.
[68] L. A. Nagahara and H. Tokumoto, "Scanning near-field optical microscopy / spectroscopy of thin organic films," J. of Vacc. Sci. & Tech. B, Vol. 14, pp. 800, 1996.
[69] S. K. Buratto and J. W. P. Hsu, "Near-field photoconductivity-application to carrier transport in ingaasp quantum-well lasers," Appl. Phy. Lett., Vol. 65, pp. 2654-265 ,1994.
[70] W. P. Ambrose, P. M. Goodwin, J. C. Martin, and R. A. Keller, "Single-molecule detection and photochemistry on a surface using near-field optical-excitation," Phys. Rev. Lett., Vol. 72, pp. 160-163, 1994.
[71] G.. Binnig and H. Rohrer, "Scanning tunneling microscopy," Helv. Phys. Acta., Vol. 55, pp. 726-735, 1982.
[72] G. Binnig, C. F. Quate, and C. Gerber, "Atomic force miscopy," Phys. Rev. Lett., Vol. 56, pp. 930-933, 1986.
[73] L. Novotny, E. Z. Sanchez and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicrosc. Vol. 71, pp. 21-29, 1998.
[74] J. A. Porto, P. Johansson, S. P. Apell, and T. Lopez-Rios, "Resonance shift effects in apertureless scanning near-field optical microscopy," Phys. Rev. B, Vol. 67, 085409, 2003.
[75] R. Fikri, D. Barchiesi, F. H’Dhili, R. Bachelot, A. Vial, P. Royer, "Modeling recent experiments of apertureless near-field optical microscopy using 2D finite element method," Opt. Comm. Vol. 221, pp. 12-22, 2003.
[76] Y. C. Martin, F. Hamann, and H. K. Wickramasinghe, "Strength of the electric field in apertureless near-field optical microscopy," J. Appl. Phys., Vol. 89, pp. 5774, 2001.
[77] J.W. Goodman, Statistical optics, New York, NY: John Wiley and Sons, 1985.
[78] J. T. Oh and S. W. Kim, "Polarization-sensitive optical coherence tomography for photoelasticity testing of galss/epoxy composites," Opt. Express, Vol. 11, pp.1669-1676, 2003.
[79] K. Schoenenberger, B. W. Colston, Jr, D. J. Maitland, L. B. Da Silva, and M. J. Everett, "Mapping of birefringence and thermal damage in tissue by sue of polarization-sensitive optical coherence tomography," Appl. Opt., Vol. 37, pp. 6026-6036, 1998.
[80] Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett., Vol. 25, pp. 114-116, 2000.
[81] M. Sticker, C. K. Hitzenberger, R. Leitgeb, and A. F. Fercher, "Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography, " Opt. Lett., Vol. 26, pp. 518-520, 2001.
[82] A. Yariv and P. Yeh, Optical waves in crystal, John Wiley & Sons, Inc., Ch4, 1984.
[83] E. Hecht, Optics, Fourth ed. USA: Addison Wesley, 2002.
[84] M. Born and E. Wolf, Principles of optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. Cambridge, UK: Cambridge University Press, 1999.
[85] W. S. Wieglhofer and A. Lakhtakia, Introduction to complex mediums for optics and electromagnectics Vol. PM123. Bellingham, WA, USA: SPIE Press, 2003.
[86] I. C. Khoo and F. Simoni, Physics of Liquid Crystalline Materials Vol. Chapter 13: Gorden and Breach Science Publishers, 1991.
[87] S. Savenkov, "Invariance of anisotropy properties presentation in scope of polarization equivalence theorems," Proc. SPIE, Vol. 6536, pp. 65360G, 2007.
[88] J. Kobayashi and T. Asahi, "Development of HAUP and its applications to various kinds of solids," Proc. SPIE, San Diego, CA, USA, pp. 25-39, 2000.
[89] J. Schellman and H. P. Jensen, "Optical spectroscopy of oriented molecules," Chem. Rev., Vol. 87, pp. 1359-1399, 1987.
[90] O. Arteaga and A. Canillas, "Analytic inversion of the Mueller-Jones polarization matrices for homogeneous media," Opt. Lett., Vol. 35, pp. 559-561, 2010.
[91] J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevich, and P. Royer, "Influence of tip modulation on image formation in scanning near-field optical microscopy," J. Appl. Phys., Vol. 89, pp. 5159-5169, 2001.
[92] Y. L Lo and C. H. Chuang, "New synthetic-heterodyne demodulation for an optical fiber interferometry," IEEE J. Quantum Electro., Vol. 37, 658-663, 2001.
[93] E. D. Palik, Handbook of optical constants of solids, Academic, New York, 1985.
[94] H. Harima, S. Nakashima, and T. Uemura, "Raman-scattering from anisotropic LO-phonon-plasmon-coupled mode in n-type 4H-SiC and 6H-SiC," J. Appl. Phys., Vol. 78, pp. 1996-2005, 1995.
[95] A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, "Nanoscale resolved infrared probing of crystal structure and of plasmon–phonon coupling," Nano Lett., Vol. 6, pp. 774–778, 2006.
[96] J. Liu and Y, K. Vohra, "Raman modes of 6H polytype of silicon-carbide to ultrahigh pressures—a comparison with silicon and diamond," Phys. Rev. Lett., Vol. 72, pp. 4105–4108, 1994.
[97] H. C. Cheng and Y. L. Lo, "The synthesis of multiple parameters of arbitrary FBGs via a genetic algorithm, and two thermally modulated intensity," J. Lightwave Technol., Vol. 23, pp. 2158-2168, 2005.
[98] T. C. Yu and Y. L. Lo, "A novel heterodyne polarimeter for the multiple-parameter measurements of twisted nematic liquid crystal cell using a genetic algorithm approach," J. Lightwave Technol., Vol. 25, pp. 946-951, 2007.
[99] H. Mutschke, A. C. Andersen, D. Clement, T. Henning, and G. Peiter, "Infrared properties of SiC particles," Astron. Astrophys., Vol. 345, pp. 187-202, 1999.
[100] H. Harima, S. Nakashima, and T. Uemura, "Raman-scattering from anisotropic LO-phonon-plasmon-coupled mode in n-type 4H-SiC and 6H-SiC," J. Appl. Phys., Vol. 78, pp. 1996-2005, 1995.
[101] J. Liu and Y, K. Vohra, "Raman modes of 6H polytype of silicon-carbide to ultrahigh pressures—a comparison with silicon and diamond," Phys. Rev. Lett., Vol. 72, pp. 4105–4108, 1994.
[102] D. S. Kliger, J. W. Lewis and C. E. Randall, Polarized light in optics and spectroscopy, Academic Press, Inc., 1990.
[103] J. J. Gil, and E. Bernabeu, "Depolarization and polarization indices of an optical system," Opt. Acta., Vol. 33, pp. 85-189, 1986.
[104] R. A. Chipman, "Depolarization index and the average degree of polarization," Appl. Opt., Vol. 44, pp. 2490-2495, 2005.
[105] B. J. Deboo, J. M. Sasian, and R. A. Chipman, "Depolarization of diffusely reflecting man-made objects," Appl. Opt., Vol. 44, pp. 5434-5445, 2005.
[106] Z. Michalewicz, Genetic Algorithm + Data structure = Evolution Programs, Springer-Verlag, New York, 1994.
[107] S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li, "Monodisperse MFe O (M = Fe; Co;Mn) nanoparticles," J. Amer. Chem. Soc., Vol. 126, pp. 273–279, 2004.
[108] R. N. Bracewell, The Fourier transform and its applications, McGraw-Hill, New York, 1986
校內:2018-07-23公開