| 研究生: |
楊育宣 Yang, Yu-Syuan |
|---|---|
| 論文名稱: |
銀奈米立方體於不同基材上之表面增強拉曼散射研究及其分子檢測 Surface Enhanced Raman Scattering by Positioning Silver Nanocubes on Different Substrates for the Application of the Analyte Detection |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 銀奈米立方體 、表面增強拉曼散射 、增顯因子 、有限時域差分法 |
| 外文關鍵詞: | silver nanocubes, Surface-Enhanced Raman Scattering (SERS), enhancement factors(EF), finite difference time domain method (FDTD) |
| 相關次數: | 點閱:124 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在拉曼增顯基材的製備上有許多不同的製備方法,而本論文研究包含兩個部分,第一部分是在不同基材上,藉由自組裝單分子層的方式將銀奈米粒方體自組裝於銀金屬薄膜上,探討銀金屬薄膜厚度變化對表面電將共振波長位置的改變,從實驗及FDTD模擬兩方面做為印證得到當銀金屬薄膜厚度到達一定值時,其拉曼增顯因子亦趨於一定值,並且在容易取得的鋁基材上也可以達到同樣的效果,因此我們可以藉由使用較少的時間及材料成本在基板的製備上達到相同的目的。
論文的第二部分則是承接第一部分取用便宜易取得的鋁基材以銀奈米立方體溶液滴定的方式,探討團聚效應對拉曼增顯的影響,並且與第一部分以自主裝方式製備的拉曼基板做比較,發現在以R6G、CV及4-ATP三種有機物做檢測,都可以觀察到滴式基板在偵測極限及增顯因子上都比以自組裝的拉曼基板要來的好,並且藉由FDTD模擬作為輔助說明除了奈米立方體與銀金屬薄膜間的共振腔形成的電磁場增顯外,奈米粒子間形成的熱點效應亦提供額外的電磁場增顯。
This research describes the application of positioning silver nanocubes on different substrates in Surface-Enhanced Raman Scattering (SERS). In the first section, self assembled monolayer(SAM) was used for substrate preparation to immobilize silver nanocubes on silver thin film. In order to knew the thickness effect of the silver thin films and their relationships with plasmonic resonance, silver thin films with different thickness were deposited on two different substrates. It was found that when the thickness of silver thin films reach certain value, their Raman enhancement factors(EF) are almost the same. Same phenomenon was also found on the aluminium substrate with silver thin films. From the result, we could prepare Raman substrate with less time and materials but with same Raman effect. In the second part, substrates were prepared by dropping silver nanocube solution on cheap and easily accessible aluminium substrate. By using three organic compounds R6G, CV and 4-ATP as analytes, silver nanocube solution dropping substrate obtain better Raman performance than the SAM substrate from both detection limit and EF. In order to understand this phenomenon, finite difference time domain method (FDTD) was used to simulate the local electric field intensity distribution. We find that the better performance of this substrate could be derived from the hot spots formation due to aggregation.
1. Raman, C.V. and K.S. Krishnan, A new type of secondary radiation. Nature, 1928. 121(3048): p. 501-502.
2. McQuillan, A.J., The discovery of surface-enhanced Raman scattering. Notes and Records of the Royal Society, 2009. 63(1): p. 105-109.
3. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. chemical physics letters, 1974. 26(2): p. 163-166.
4. Van Duyne, R.P., Laser excitation of Raman scattering from adsorbed molecules on electrode surfaces. Chemical and biochemical applications of lasers, 1979. 4: p. 101.
5. Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society, 1977. 99(15): p. 5215-5217.
6. Jeanmaire, D.L. and R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 84(1): p. 1-20.
7. Kerker, M., D.-S. Wang, and H. Chew, Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles. Applied Optics, 1980. 19(19): p. 3373-3388.
8. Wang, D.-S. and M. Kerker, Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids. Physical Review B, 1981. 24(4): p. 1777.
9. Xu, H., et al., Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Physical Review E, 2000. 62(3): p. 4318.
10. 賴炤銘 and 李錫隆, 奈米材料的特殊效應與應用. Chemistry (The Chinese Chem. Soc., Taipei), 2003. 61(4): p. 585-597.
11. Rycenga, M., et al., Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman scattering. Angew Chem Int Ed Engl, 2011. 50(24): p. 5473-7.
12. Rycenga, M., et al., Understanding the SERS Effects of Single Silver Nanoparticles and Their Dimers, One at a Time. J Phys Chem Lett, 2010. 1(4): p. 696-703.
13. Kottmann, J.P., et al., Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B, 2001. 64(23).
14. Xia, X., et al., Silica-coated dimers of silver nanospheres as surface-enhanced Raman scattering tags for imaging cancer cells. Interface Focus, 2013. 3(3): p. 20120092.
15. Emory, S.R., W.E. Haskins, and S. Nie, Direct observation of size-dependent optical enhancement in single metal nanoparticles. Journal of the American Chemical Society, 1998. 120(31): p. 8009-8010.
16. Sharma, B., et al., SERS: Materials, applications, and the future. Materials Today, 2012. 15(1-2): p. 16-25.
17. Jensen, L. and G.C. Schatz, Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. The Journal of Physical Chemistry A, 2006. 110(18): p. 5973-5977.
18. Hildebrandt, P. and M. Stockburger, Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. The Journal of Physical Chemistry, 1984. 88(24): p. 5935-5944.
19. Guthmuller, J. and B. Champagne, Resonance Raman spectra and Raman excitation profiles of rhodamine 6G from time-dependent density functional theory. Chemphyschem, 2008. 9(12): p. 1667-9.
20. Canamares, M.V., et al., DFT, SERS, and single-molecule SERS of crystal violet. The Journal of Physical Chemistry C, 2008. 112(51): p. 20295-20300.
21. Meng, W., et al., SERS and DFT study of crystal violet. Journal of Molecular Structure, 2013. 1035: p. 326-331.
22. Zhu, S., et al., Surface enhanced Raman scattering of 4-aminothiophenol sandwiched between Ag nanocubes and smooth Pt substrate: The effect of the thickness of Pt film. Journal of Applied Physics, 2014. 116(4): p. 044312.
23. Hu, X., et al., Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: off-surface plasmon resonance condition. The Journal of Physical Chemistry C, 2007. 111(19): p. 6962-6969.
24. 邱國斌 and 蔡定平, 金屬表面電漿簡介. 物理雙月刊, 2006. 28(2): p. 472-485.
25. Raether, H., Surface plasmons on smooth surfaces. 1988: Springer.
26. Zayats, A.V., I.I. Smolyaninov, and A.A. Maradudin, Nano-optics of surface plasmon polaritons. Physics Reports, 2005. 408(3-4): p. 131-314.
27. 吳民耀 and 劉威志, 表面電漿子理論與模擬. 物理雙月刊, 2006. 28(2): p. 486-496.
28. Formo, E.V., S.M. Mahurin, and S. Dai, Robust SERS Substrates Generated by Coupling a Bottom-Up Approach and Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2010. 2(7): p. 1987-1991.
29. Mahurin, S.M., et al., A reusable surface-enhanced Raman scattering (SERS) substrate prepared by atomic layer deposition of alumina on a multi-layer gold and silver film. Appl Spectrosc, 2011. 65(4): p. 417-22.
30. Zhang, X., et al., Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. Journal of the American Chemical Society, 2006. 128(31): p. 10304-10309.
31. Abu Hatab, N.A., J.M. Oran, and M.J. Sepaniak, Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. Acs Nano, 2008. 2(2): p. 377-385.
32. Das, G., et al., Nano-patterned SERS substrate: application for protein analysis vs. temperature. Biosens Bioelectron, 2009. 24(6): p. 1693-9.
33. Grand, J., et al., Optimization of SERS-active substrates for near-field Raman spectroscopy. Synthetic Metals, 2003. 139(3): p. 621-624.
34. Rycenga, M., J.M. McLellan, and Y. Xia, A SERS study of the molecular structure of alkanethiol monolayers on Ag nanocubes in the presence of aqueous glucose. Chemical physics letters, 2008. 463(1): p. 166-171.
35. Gole, A., C.J. Orendorff, and C.J. Murphy, Immobilization of gold nanorods onto acid-terminated self-assembled monolayers via electrostatic interactions. Langmuir, 2004. 20(17): p. 7117-7122.
36. Guarrotxena, N. and G.C. Bazan, Antitags: SERS-encoded nanoparticle assemblies that enable single-spot multiplex protein detection. Adv Mater, 2014. 26(12): p. 1941-6.
37. Nie, S., Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 1997. 275(5303): p. 1102-1106.
38. Talley, C.E., et al., Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Letters, 2005. 5(8): p. 1569-1574.
39. Kleinman, S.L., et al., Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. J Am Chem Soc, 2013. 135(1): p. 301-8.
40. Li, X., et al., Ordered array of gold semishells on TiO2 spheres: an ultrasensitive and recyclable SERS substrate. ACS Appl Mater Interfaces, 2012. 4(4): p. 2180-5.
41. Schneidewind, H., et al., The effect of silver thickness on the enhancement of polymer based SERS substrates. Nanotechnology, 2014. 25(44): p. 445203.
42. Indrasekara, A.S., et al., Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime. Nanoscale, 2014. 6(15): p. 8891-9.
43. Moran, C.H., et al., Using well-defined Ag nanocubes as substrates to quantify the spatial resolution and penetration depth of surface-enhanced Raman scattering imaging. Nanotechnology, 2014. 25(1): p. 014007.
44. Ngo, Y.H., et al., Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper. J Colloid Interface Sci, 2013. 392: p. 237-46.
45. Li, X., et al., Highly Intensified Surface Enhanced Raman Scattering by Using Monolayer Graphene as the Nanospacer of Metal Film-Metal Nanoparticle Coupling System. Advanced Functional Materials, 2014. 24(21): p. 3114-3122.
46. Lee, H.K., et al., Plasmonic liquid marbles: a miniature substrate-less SERS platform for quantitative and multiplex ultratrace molecular detection. Angew Chem Int Ed Engl, 2014. 53(20): p. 5054-8.
47. 鄭瑋銘, 均勻與非均勻網格於轉換光學之光電模擬研究. 成功大學太空天文與電漿科學研究所學位論文, 2011: p. 1-57.
48. Yee, K.S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag, 1966. 14(3): p. 302-307.
49. Berenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves. Journal of computational physics, 1994. 114(2): p. 185-200.
50. Cheng, S.-C., T.-C. Wen, and Y.-C. Lan, Plasmonic cavities derived from silver nanoparticles atop a massed silver surface for surface enhancement Raman scattering. RSC Adv., 2014. 4(84): p. 44457-44461.
51. Cheng, S.-C. and T.-C. Wen, Robust SERS substrates with massive nanogaps derived from silver nanocubes self-assembled on massed silver mirror via 1,2-ethanedithiol monolayer as linkage and ultra-thin spacer. Materials Chemistry and Physics, 2014. 143(3): p. 1331-1337.
52. Wang, Y., et al., Synthesis of Ag nanocubes 18-32 nm in edge length: the effects of polyol on reduction kinetics, size control, and reproducibility. J Am Chem Soc, 2013. 135(5): p. 1941-51.
53. Skrabalak, S.E., et al., Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc, 2007. 2(9): p. 2182-90.
54. Rakić, A.D., et al., Optical properties of metallic films for vertical-cavity optoelectronic devices. Applied optics, 1998. 37(22): p. 5271-5283.
55. Lassiter, J.B., et al., Plasmonic waveguide modes of film-coupled metallic nanocubes. Nano Lett, 2013. 13(12): p. 5866-72.
56. Love, J.C., et al., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews, 2005. 105(4): p. 1103-1170.
57. 林珮瑋, 奈米線構成之大範圍網狀結構與其表面增強拉曼散射光譜之研究. 成功大學化學工程學系學位論文, 2012: p. 1-104.
58. Ou, F.S., et al., Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced Raman spectroscopy. Nano Lett, 2011. 11(6): p. 2538-42.
59. Harraz, F.A., et al., Surface-enhanced Raman scattering (SERS)-active substrates from silver plated-porous silicon for detection of crystal violet. Applied Surface Science, 2015. 331: p. 241-247.
校內:2020-07-27公開